Bessel Processes, the Brownian Snake and Super-Brownian Motion

Part of the Lecture Notes in Mathematics book series (LNM, volume 2137)


We prove that, both for the Brownian snake and for super-Brownian motion in dimension one, the historical path corresponding to the minimal spatial position is a Bessel process of dimension − 5. We also discuss a spine decomposition for the Brownian snake conditioned on the minimizing path.


  1. 1.
    N. Curien, J.-F. Le Gall, The Brownian plane. J. Theor. Probab. 27(4), 1249–1291 (2014).MATHCrossRefGoogle Scholar
  2. 2.
    N. Curien, J.-F. Le Gall, The hull process of the Brownian plane (submitted) [arXiv:1409.4026]Google Scholar
  3. 3.
    D.A. Dawson, I. Iscoe, E.A. Perkins, Super-Brownian motion: path properties and hitting probabilities. Probab. Theory Relat. Fields 83, 135–205 (1989)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    D.A. Dawson, E.A. Perkins, Historical processes. Mem. Am. Math. Soc. 93(454), 1–179 (1991)MathSciNetGoogle Scholar
  5. 5.
    J.-F. Delmas, Some properties of the range of super-Brownian motion. Probab. Theory Relat. Fields 114, 505–547 (1999)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Duquesne, J.-F. Le Gall, Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque, vol. 281 (Société mathématique de France, Paris, 2002)Google Scholar
  7. 7.
    E.B. Dynkin, Path processes and historical superprocesses. Probab. Theory Relat. Fields 90, 1–36 (1991)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.-F. Le Gall, Hitting probabilities and potential theory for the Brownian path-valued process. Ann. Inst. Fourier 44, 277–306 (1994)MATHCrossRefGoogle Scholar
  9. 9.
    J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich (Birkhäuser, Boston, 1999)Google Scholar
  10. 10.
    J.-F. Le Gall, Random trees and applications. Probab. Surv. 2, 245–311 (2005)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J.-F. Le Gall, L. Ménard, Scaling limits for the uniform infinite quadrangulation. Ill. J. Math. 54, 1163–1203 (2010)MATHGoogle Scholar
  12. 12.
    J.-F. Le Gall, M. Weill, Conditioned Brownian trees. Ann. Inst. Henri. Poincaré Probab. Stat. 42, 455–489 (2006)MATHCrossRefGoogle Scholar
  13. 13.
    J. Pitman, M. Yor, Bessel processes and infinitely divisible laws, in Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Mathematics, vol. 851 (Springer, Berlin, 1981), pp. 285–370Google Scholar
  14. 14.
    J. Pitman, M. Yor, A decomposition of Bessel bridges. Z. Wahrsch. Verw. Gebiete 59, 425–457 (1982)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion (Springer, Berlin, 1991)MATHCrossRefGoogle Scholar
  16. 16.
    D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions, I. Proc. Lond. Math. Soc. Ser. 3(28), 738–768 (1974)CrossRefGoogle Scholar
  17. 17.
    M. Yor, Loi de l’indice du lacet brownien et distribution de Hartman-Watson. Z. Wahrsch. Verw. Gebiete 53, 71–95 (1980)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Département de mathématiquesUniversité Paris-Sud and Institut universitaire de FranceOrsay CédexFrance

Personalised recommendations