Matsumoto–Yor Process and Infinite Dimensional Hyperbolic Space

Part of the Lecture Notes in Mathematics book series (LNM, volume 2137)


The Matsumoto–Yor process is \(\int _{0}^{t}\exp (2B_{s} - B_{t})\,ds,t \geq 0\), where (B t ) is a Brownian motion. It is shown that it is the limit of the radial part of the Brownian motion at the bottom of the spectrum on the hyperbolic space of dimension q, when q tends to infinity. Analogous processes on infinite series of non compact symmetric spaces and on regular trees are described.


Brownian Motion Symmetric Space Hyperbolic Space Radial Part Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Ph., Anker, Ph. Bougerol, Th. Jeulin, The infinite Brownian loop on a symmetric space. Rev. Mat. Iberoamericana 18(1), 41–97 (2002)Google Scholar
  2. 2.
    F. Baudoin, Further exponential generalization of Pitman’s 2MX theorem. Electron. Commun. Probab. 7, 37–46 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    F. Baudoin, N. O’Connell, Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. Henri Poincaré Probab. Stat. 47(4), 1096–1120 (2011)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ph. Biane, Introduction to random walks on noncommutative spaces, in Quantum Potential Theory. Lecture Notes in Mathematics, vol. 1954 (Springer, Berlin, 2008), pp. 61–116Google Scholar
  5. 5.
    Ph. Bougerol, Exemples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré Sect. Probab. Stat. 19(4), 369–391 (1983)MATHMathSciNetGoogle Scholar
  6. 6.
    D. Bump, Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1998)Google Scholar
  7. 7.
    J.W. Cannon, W.J. Floyd, R. Kenyon, W.R. Parry, Hyperbolic geometry, in Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, 59–115 (Cambridge Univ. Press, Cambridge, 1997)Google Scholar
  8. 8.
    P. Cartier, Fonctions harmoniques sur un arbre. Symposia Mathematica, vol. IX (Academic, London, 1972), pp. 203–270Google Scholar
  9. 9.
    D.I. Cartwright, V.A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees. Ann. Inst. Fourier 44(4), 1243–1288 (1994)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Chhaibi, Littelmann path model for geometric crystals, Whittaker functions on Lie groups and Brownian motion. PhD Thesis, Université Pierre et Marie Curie — Paris VI (2013) [arXiv:1302.0902]Google Scholar
  11. 11.
    M. Cowling, G. Gaudry, S. Giulini, G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups. Trans. Am. Math. Soc. 323(2), 637–649 (1991)MATHMathSciNetGoogle Scholar
  12. 12.
    M. Cowling, S. Giulini, A. Hulanicki, G. Mauceri, Spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. Studia Math. 111, 103–121 (1994)MATHMathSciNetGoogle Scholar
  13. 13.
    E.B. Davies, Heat Kernel and Spectral Theory (Cambridge University Press, Cambridge, 1989)CrossRefGoogle Scholar
  14. 14.
    A. Figa-Talamanca, C. Nebbia, Harmonic Analysis and Representation Theory for Groups Acting on Homogeneous Trees. London Mathematical Society Lecture Note Series, vol. 162 (Cambridge University Press, Cambridge, 1991)Google Scholar
  15. 15.
    J. Franchi, Y. Le Jan, Hyperbolic Dynamics and Brownian Motion, An Introduction. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2012)MATHCrossRefGoogle Scholar
  16. 16.
    R. Gangolli, V.S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 101 (Springer, Berlin, 1988)Google Scholar
  17. 17.
    Y. Guivarc’h, L. Ji, J.C. Taylor, Compactifications of Symmetric Spaces. Progress in Mathematics, vol. 156 (Birkhäuser, Boston, 1998)Google Scholar
  18. 18.
    S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions. Pure and Applied Mathematics, vol. 113 (Academic, 1984)Google Scholar
  19. 19.
    B. Hoogenboom, Spherical functions and invariant differential operators on complex Grassmann manifolds. Ark. Mat. 20(1), 69–85 (1982)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    V.I. Inozemtsev, The finite Toda lattices. Commun. Math. Phys. 121(4), 629–638 (1989)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library, vol. 24 (North Holland, Amsterdam, 1989)Google Scholar
  22. 22.
    A. Iozzi, D.W. Morris, Cartan-decomposition subgroups of SU(2, n). J. Lie Theory 11(2), 505–543 (2001)MATHMathSciNetGoogle Scholar
  23. 23.
    A.W. Knapp, Lie Groups, Beyond an Introduction (Birkhäuser, Boston, 2002)MATHGoogle Scholar
  24. 24.
    Q.K. Lu, The heat kernels of non compact symmetric spaces, in Analysis and Geometry on Complex Homogeneous Domains, ed. by Faraut et al. Progress in Mathematics, vol. 185 (Birkhäuser, Basel, 2000)Google Scholar
  25. 25.
    H. Matsumoto, Y. Ogura, Markov or non-Markov property of cMX processes. J. Math. Soc. Jpn. 56, 519–540 (2004)MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    H. Matsumoto, M. Yor, A version of Pitman’s 2MX theorem for geometric Brownian motions. C. R. Acad. Sci. Paris, Ser. I 328, 1067–1074 (1999)Google Scholar
  27. 27.
    H. Matsumoto, M. Yor, An analogue of Pitman’s 2MX theorem for exponential Wiener functionals. Part I: A time-inversion approach. Nagoya Math. J. 159, 125–166 (2000)MATHMathSciNetGoogle Scholar
  28. 28.
    H. Matsumoto, M. Yor, An analogue of Pitman’s 2MX theorem for exponential Wiener functionals. Part II: The role of the generalized inverse Gaussian laws. Nagoya Math. J. 162, 65–86 (2001)MATHMathSciNetGoogle Scholar
  29. 29.
    N. O’Connell, Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)MATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    M.A. Olshanetsky, A.M. Perelomov, Quantum systems connected with root systems and the radial parts of Laplace operators. Funct. Anal. Appl. 12(2), 60–68 (1978)Google Scholar
  31. 31.
    M.A. Olshanetsky, A.M. Perelomov, Quantum integrable systems related to Lie algebras. Phys. Rep. 94(6), 313–404 (1983)MathSciNetCrossRefGoogle Scholar
  32. 32.
    T. Oshima, N. Shimeno, Heckman-Opdam hypergeometric functions and their specializations, in New Viewpoints of Representation Theory and Noncommutative Harmonic Analysis? RIMS Kôkyûroku Bessatsu, vol. B20 (2010), pp. 129–162Google Scholar
  33. 33.
    Y. Pinchover, Large time behaviour of the heat kernel and the behaviour of the Green function near criticality for nonsymmetric elliptic operators. J. Funct. Anal. 104, 54–70 (1992)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    R.G. Pinsky, Positive Harmonic Functions and Diffusion. Cambridge Studies Advanced Mathematics, vol. 45 (Cambridge University Press, Cambridge, 1995)Google Scholar
  35. 35.
    J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7(3), 511–526 (1975)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    B. Rider, B. Valko, Matrix Dufresne identities (2014) [arXiv:1409.1954]Google Scholar
  37. 37.
    P. Sawyer, Spherical functions on SO( p, q)∕SO( p) × SO(q). Canad. Math. Bull. 42(4), 486–498 (1999)MATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    N. Shimeno, A limit transition from the Heckman-Opdam hypergeometric functions to the Whittaker functions associated with root systems (2008) [arXiv:0812.3773]Google Scholar
  39. 39.
    W. Woess, Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138 (Cambridge University Press, Cambridge, 2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie CurieParisFrance

Personalised recommendations