Advertisement

Explicit Formulae in Probability and in Statistical Physics

  • Alain Comtet
  • Yves Tourigny
Part of the Lecture Notes in Mathematics book series (LNM, volume 2137)

Abstract

We consider two aspects of Marc Yor’s work that have had an impact in statistical physics: firstly, his results on the windings of planar Brownian motion and their implications for the study of polymers; secondly, his theory of exponential functionals of Lévy processes and its connections with disordered systems. Particular emphasis is placed on techniques leading to explicit calculations.

Notes

Acknowledgements

It is a pleasure to thank our colleague Christophe Texier for commenting on the manuscript.

References

  1. 1.
    P.W. Anderson, Absence of diffusion in a certain random lattice. Phys. Rev. 109, 1492–1505 (1958)CrossRefGoogle Scholar
  2. 2.
    F. Baudoin, N. O’Connell, Exponential functionals of Brownian motion and class-one Whittaker functions. Ann. Inst. Henri Poincaré Probab. Stat. 47, 1096–1120 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    C. Bélisle, Windings of random walks. Ann. Probab. 17, 1377–1402 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    M.A. Berger, P.H. Roberts, On the number winding problem with finite steps. Adv. Appl. Probab. 20, 261–274 (1988)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Bertoin, Lévy Processes (Cambridge University Press, Cambridge, 1996)zbMATHGoogle Scholar
  6. 6.
    J. Bertoin, D. Dufresne, M. Yor, Some two-dimensional extensions of Bougerol’s identity in law for the exponential functional of linear Brownian motion. Rev. Mat. Iberoam. 29, 1307–1324 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Bertoin, M. Yor, Exponential functionals of Lévy processes. Probab. Surv. 2, 191–212 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    J.-P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal, Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. 201, 285–341 (1990)CrossRefGoogle Scholar
  9. 9.
    C. Bouchiat, M. Mézard, Elasticity model of a supercoiled DNA molecule. Phys. Rev. Lett. 80, 1556–1559 (1998)CrossRefGoogle Scholar
  10. 10.
    P. Bougerol, Examples de théorèmes locaux sur les groupes résolubles. Ann. Inst. H. Poincaré Sect. B (N.S.) 19, 403–432 (1983)Google Scholar
  11. 11.
    P. Bougerol, J. Lacroix, Products of Random Matrices with Applications to Schrödinger Operators (Birkhaüser, Basel, 1985)zbMATHCrossRefGoogle Scholar
  12. 12.
    P. Carmona, F. Petit, M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in Exponential functionals and principal values related to Brownian motion. Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, pp. 73–130 (1997)Google Scholar
  13. 13.
    A. Comtet, J. Desbois, C. Monthus, Asymptotic laws for the winding angles of planar Brownian motion. J. Stat. Phys. 73, 433–440 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Comtet, J. Desbois, S. Ouvry, Winding of planar Brownian curves. J. Phys. A Math. Gen. 23, 3563–3572 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Comtet, C. Texier, Y. Tourigny, Supersymmetric quantum mechanics with Lévy disorder in one dimension. J. Stat. Phys. 145, 1291–1323 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Comtet, C. Texier, Y. Tourigny, Lyapunov exponents, one-dimensional Anderson localization and products of random matrices. J. Phys. A Math. Theor. 46, 254003 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Comtet, C. Texier, Y. Tourigny, Products of random matrices and generalised quantum point scatterers. J. Stat. Phys. 140, 427–466 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Desbois, C. Furtlehner, S. Ouvry, Random magnetic impurities and the Landau problem. Nucl. Phys. B 453 [FS], 759–776 (1995)Google Scholar
  19. 19.
    B. Drossel, M. Kardar, Winding angle distributions for random walks and flux lines. Phys. Rev. E 53, 5861–5871 (1996)CrossRefGoogle Scholar
  20. 20.
    D. Dufresne, The distribution of a perpetuity, with applications to risk theory and pension funding. Scan. Actuar. J. no. 1–2, 39–79 (1990)MathSciNetCrossRefGoogle Scholar
  21. 21.
    F.J. Dyson, The dynamics of a random linear chain. Phys. Rev. 92, 1331–1338 (1953)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    S.F. Edwards, Statistical mechanics with topological constraints I. Proc. Phys. Soc 91, 513–519 (1967)zbMATHCrossRefGoogle Scholar
  23. 23.
    H.L. Frisch, S.P. Lloyd, Electron levels in a one-dimensional lattice. Phys. Rev. 120, 1175–1189 (1960)zbMATHCrossRefGoogle Scholar
  24. 24.
    C. Garban, J.A. Trujillo-Ferreras, The expected area of the filled planar Brownian loop is π∕5. Commun. Math. Phys. 264, 797–810 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    G. Gavazzi, J.M. Wheatley, A.J. Schofield, Single particle motion in a random magnetic flux. Phys. Rev. E 47, 15170–15176 (1993)CrossRefGoogle Scholar
  26. 26.
    H.K. Gjessing, J. Paulsen, Present value distribution with applications to ruin theory and stochastic equations. Stoch. Process. Appl. 71, 123–144 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Grosberg, H. Frisch, Winding angle distribution for planar random walk, polymer ring entangled with an obstacle, and all that: Spitzer–Edwards–Prager–Frisch model revisited. J. Phys. A Math. Gen. 36, 8955 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    F. Hirsch, M. Yor, On the Mellin transforms of the perpetuity and the remainder variables associated to a subordinator. Bernoulli 19, 1350–1377 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Kallianpur, H. Robbins, Ergodic property of the Brownian motion process. Proc. Nat. Acad. Sci. USA 39, 525–533 (1953)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    J.F.C. Kingman, Subadditive ergodic theory. Ann. Probab. 1, 883–899 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Kotani, On asymptotic behaviour of the spectra of a one-dimensional Hamiltonian with a certain random coefficient. Publ. RIMS Kyoto Univ. 12, 447–492 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Lamperti, Semi–stable Markov processes I. Z. Wahrsch. verw. Geb. 22, 205–225 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    J.-M. Luck, Systèmes désordonnés unidimensionels (Aléa, Saclay, 1992)Google Scholar
  34. 34.
    H. Matsumoto, M. Yor, Exponential functionals of Brownian motion I: probability laws at fixed times. Probab. Surv. 2, 312–347 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    H. Matsumoto, M. Yor, Exponential functionals of Brownian motion II: some related diffusion processes. Probab. Surv. 2, 348–384 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Messulam, M. Yor, On D. Williams’ “pinching method” and some applications. J. Lond. Math. Soc. s2–26, 348–364 (1982)Google Scholar
  37. 37.
    D.R. Nelson, Vortex entanglement in high-T c superconductors. Phys. Rev. Lett. 60, 1973–1976 (1988)MathSciNetCrossRefGoogle Scholar
  38. 38.
    N. O’Connell, Directed polymers and the quantum Toda lattice. Ann. Probab. 40, 437–358 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    B. Øksendal, Stochastic Differential Equations, 6th edn. (Springer, Berlin, 2010)Google Scholar
  40. 40.
    L.A. Pastur, A. Figotin, Spectra of Random and Quasi-periodic Operators (Springer, Berlin, 1992)CrossRefGoogle Scholar
  41. 41.
    P. Patie, Infinite divisibility of solutions to some self-similar integro-differential equations and exponential functionals of Lévy processes. Ann. Inst. H. Poincaré Probab. Stat. 45, 667–684 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. Pitman, M. Yor, Asymptotic laws of planar Brownian motion. Ann. Probab. 14, 733–779 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    S. Prager, H.L. Frisch, Statistical mechanics of a simple entanglement. J. Chem. Phys. 46, 1475–1483 (1967)CrossRefGoogle Scholar
  44. 44.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion (Springer, New-York, 1999)zbMATHCrossRefGoogle Scholar
  45. 45.
    J. Rudnick, Y. Hu, The winding angle distribution of an ordinary random walk. J. Phys. A Math. Gen. 20, 4421–4439 (1987)MathSciNetCrossRefGoogle Scholar
  46. 46.
    H. Saleur, Winding angle distribution for Brownian and self-avoiding walks. Phys. Rev. E 50, 1123–1130 (1994)CrossRefGoogle Scholar
  47. 47.
    F. Spitzer, Some theorems concerning two-dimensional Brownian motions. Trans. Am. Math. Soc. 87, 187–197 (1958)zbMATHMathSciNetGoogle Scholar
  48. 48.
    S. Vakeroudis, M. Yor, D. Holcman, The mean first rotation time of a planar polymer. J. Stat. Phys. 143, 1074–1095 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    W. Werner, Formule de Green, lacet brownien plan et aire de Lévy. Stoch. Process. Appl. 57, 225–245 (1995)zbMATHCrossRefGoogle Scholar
  50. 50.
    M. Yor, Loi de l’indice du lacet Brownien et distributions de Hartman–Watson. Z. Wahrsch. Verw. Gebiete 53, 71–95 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Yor, Exponential Functionals of Brownian Motion and Related Processes (Springer, Berlin, 2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.ParisFrance
  2. 2.Univ. Paris Sud, CNRS, LPTMS, UMR 8626OrsayFrance
  3. 3.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations