Large Deviations for Clocks of Self-similar Processes

  • Nizar Demni
  • Alain Rouault
  • Marguerite Zani
Part of the Lecture Notes in Mathematics book series (LNM, volume 2137)


The Lamperti correspondence gives a prominent role to two random time changes: the exponential functional of a Lévy process drifting to \(\infty\) and its inverse, the clock of the corresponding positive self-similar process. We describe here asymptotical properties of these clocks in large time, extending the results of Yor and Zani (Bernoulli 7, 351–362, 2001).



The authors want to thank Frédérique Petit for valuable conversations on the Cauchy clock.


  1. 1.
    J. Bertoin, Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics, vol. 102 (Cambridge University Press, Cambridge, 2006)Google Scholar
  2. 2.
    J. Bertoin, M.E. Caballero, Entrance from 0+ for increasing semi-stable Markov processes. Bernoulli 8(2), 195–205 (2002)zbMATHMathSciNetGoogle Scholar
  3. 3.
    J. Bertoin, M. Yor, The entrance laws of self-similar Markov processes and exponential functionals of Lévy processes. Potential Anal. 17(4), 389–400 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Bertoin, M. Yor, Exponential functionals of Lévy processes. Probab. Surv. 2, 191–212 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.E. Caballero, V. Rivero, On the asymptotic behaviour of increasing self-similar Markov processes. Electron. J. Probab. 14, 865–894 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.E. Caballero, J.C. Pardo, J.L. Pérez, Explicit identities for Lévy processes associated to symmetric stable processes. Bernoulli 17(1), 34–59 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ph. Carmona, F. Petit, M. Yor, On exponential functionals of certain Lévy processes. Stochast. Stochast. Rep. 47, 71–101 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ph. Carmona, F. Petit, M. Yor, On the distribution and asymptotic results for exponential functionals of Lévy processes, in Exponential Functionals and Principal Values Related to Brownian Motion. Bibl. Rev. Mat. Iberoamericana, (Rev. Mat. Iberoamericana, Madrid), pp. 73–130 (1997)Google Scholar
  9. 9.
    Ph. Carmona, F. Petit, M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Matemática Iberoam. 14(2), 311–367 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Ph. Carmona, F. Petit, M. Yor, Exponential functionals of Lévy processes, in Lévy Processes (Birkhauser, Boston, 2001), pp. 41–55Google Scholar
  11. 11.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, New York, 1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    N. Demni, M. Zani, Large deviations for statistics of the Jacobi process. Stochast. Process. Appl. 119(2), 518–533 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    N.G. Duffield, W. Whitt, Large deviations of inverse processes with nonlinear scalings. Ann. Appl. Probab. 8(4), 995–1026 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    U. Küchler, M. Sørensen, Exponential Families of Stochastic Processes. Springer Series in Statistics (Springer, New York, 1997)Google Scholar
  15. 15.
    A. Kyprianou, Fluctuations of Lévy Processes with Applications. Universitext, 2nd edn. (Springer, Heidelberg, 2014) [Introductory lectures]Google Scholar
  16. 16.
    A.E. Kyprianou, J.C. Pardo, A.R. Watson, The extended hypergeometric class of Lévy processes. J. Appl. Probab. 51A, 391–408 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    J. Lamperti, Semi-stable Markov processes I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22, 205–225 (1972)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    G. Letac, M. Mora, Natural exponential families with cubic variance. Ann. Stat. 18, 1–37 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    R. Mansuy, M. Yor, Aspects of Brownian Motion. Universitext (Springer, Berlin, 2008)zbMATHCrossRefGoogle Scholar
  20. 20.
    K. Maulik, B. Zwart, Tail asymptotics for exponential of Lévy processes. Stoch. Process. Appl. 116, 156–177 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    P. Patie, Exponential functional of a new family of Lévy processes and self-similar continuous state branching processes with immigration. Bull. Sci. Math. 133(4), 355–382 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3rd edn. (Springer, Berlin, 1999)Google Scholar
  23. 23.
    V. Rivero, A law of iterated logarithm for increasing self-similar Markov processes. Stochast. Stochast. Rep. 75(6), 443–462 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Yor, Some Aspects of Brownian Motion. Part I: Some Special Functionals. Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 1992)Google Scholar
  25. 25.
    M. Yor, Exponential Functionals of Brownian Motion and Related Processes. Springer Finance (Springer, Berlin, 2001) [With an introductory chapter by Hélyette Geman, Chapters 1, 3, 4, 8 translated from the French by Stephen S. Wilson]zbMATHCrossRefGoogle Scholar
  26. 26.
    M. Yor, M. Zani, Large deviations for the Bessel clock. Bernoulli 7, 351–362 (2001)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut de Recherche Mathematiques de RennesRennesFrance
  2. 2.Université Versailles-Saint-Quentin, LMV UMR 8100, Bâtiment FermatVersailles-CedexFrance
  3. 3.Université d’OrléansUFR Sciences, Bâtiment de mathématiquesOrléans Cedex 2France

Personalised recommendations