Part of the Lecture Notes in Mathematics book series (LNM, volume 2137)

# Mod-Gaussian Convergence and Its Applications for Models of Statistical Mechanics

## Abstract

In this paper we complete our understanding of the role played by the limiting (or residue) function in the context of mod-Gaussian convergence. The question about the probabilistic interpretation of such functions was initially raised by Marc Yor. After recalling our recent result which interprets the limiting function as a measure of “breaking of symmetry” in the Gaussian approximation in the framework of general central limit theorems type results, we introduce the framework of L1-mod-Gaussian convergence in which the residue function is obtained as (up to a normalizing factor) the probability density of some sequences of random variables converging in law after a change of probability measure. In particular we recover some celebrated results due to Ellis and Newman on the convergence in law of dependent random variables arising in statistical mechanics. We complete our results by giving an alternative approach to the Stein method to obtain the rate of convergence in the Ellis-Newman convergence theorem and by proving a new local limit theorem. More generally we illustrate our results with simple models from statistical mechanics.

### References

1. 1.
R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982)
2. 2.
A. Bovier, Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mechanics, vol. 18 (Cambridge University Press, Cambridge, 2006)Google Scholar
3. 3.
F. Delbaen, E. Kowalski, A. Nikeghbali, Mod-ϕ convergence (2011) (arXiv:1107.5657v2 [math.PR])Google Scholar
4. 4.
P. Eichelsbacher, M. Löwe, Stein’s method for dependent random variables occurring in statistical mechanics. Electron. J. Probab. 15(30), 962–988 (2010)
5. 5.
R.S. Ellis, C.M. Newman, Limit theorems for sums of dependent random variables occurring in statistical mechanics. Z. Wahrsch. Verw. Gebiete 44(2), 117–139 (1978)
6. 6.
R.S. Ellis, C.M. Newman, J.S. Rosen, Limit theorems for sums of dependent random variables occurring in statistical mechanics II. Z. Wahrsch. Verw. Gebiete 51(2), 153–169 (1980)
7. 7.
C.-G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gauss law. Acta Math. 77(1), 1–125 (1945)
8. 8.
V. Féray, P.-L. Méliot, A. Nikeghbali, Mod-ϕ convergence and precise deviations (2013) (arXiv:1304.2934v3 [math.PR])Google Scholar
9. 9.
I.A. Ibragimov, Y.V. Linnik, Independent and Stationary Sequences of Random Variables (Wolters-Noordhoff, Groningen, 1971)
10. 10.
J. Jacod, E. Kowalski, A. Nikeghbali, Mod-Gaussian convergence: new limit theorems in probability and number theory. Forum Math. 23(4), 835–873 (2011)
11. 11.
D. Knuth, The Art of Computer Programming. Generating All Trees - History of Combinatorial Generation, vol. 4 [Fascicle 4] (Addison Wesley Longman, Amsterdam, 2004)Google Scholar
12. 12.
E. Kowalski, A. Nikeghbali, Mod-Poisson convergence in probability and number theory. Int. Math. Res. Not. 18, 3549–3587 (2010)
13. 13.
E. Kowalski, A. Nikeghbali, Mod-Gaussian distribution and the value distribution of ζ(1∕2 + it) and related quantities. J. Lond. Math. Soc. 86(2), 291–319 (2012)
14. 14.
E. Kowalski, J. Najnudel, A. Nikeghbali, A characterization of limiting functions arising in mod-∗ convergence (2013). http://arxiv.org/pdf/1304.2179.pdf
15. 15.
V.P. Leonov, A.N. Shiryaev, On a method of calculation of semi-invariants. Theory Probab. Appl. 4, 319–329 (1959)
16. 16.
E. Lukacs, O. Szász, On analytic characteristic functions. Pac. J. Math. 2(4), 615–625 (1952)
17. 17.
M. Reed, B. Simon, Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-adjointness (Academic, New York, 1975)Google Scholar
18. 18.
A. Röllin, N. Ross, Local limit theorems via Landau-Kolmogorov inequalities. Bernoulli 21(2), 851–880 (2015) (arXiv:1011.3100v2 [math.PR])Google Scholar
19. 19.
G.-C. Rota, On the foundations of combinatorial theory I: theory of Möbius functions. Zeit. Wahr. Verw. Geb. 2, 340–368 (1964)
20. 20.
D. Tamari, The algebra of bracketings and their enumeration. Nieuw Archief voor Wiskunde Ser. 3 10, 131–146 (1962)
21. 21.
T. Tao, Topics in Random Matrix Theory. Graduate Studies in Mathematics, vol 132 (American Mathematical Society, Providence, 2012)Google Scholar
22. 22.
V.A. Zorich, Mathematical Analysis II. Universitext (Springer, New York, 2004)