Use of Flow Equivalent Servers in the Transient Analysis of Product Form Queuing Networks

  • Alessio Angius
  • András Horváth
  • Sami M. Halawani
  • Omar Barukab
  • Ab Rahman Ahmad
  • Gianfranco Balbo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9081)

Abstract

In this paper we deal with approximate transient analysis of Product Form Queuing Networks. In particular, we exploit the idea of flow equivalence to reduce the size of the model. It is well-known that flow equivalent servers lead to exact steady state solution in many cases. Our goal is to investigate the applicability of flow equivalence to transient analysis. We show that exact results can be obtained even in the transient phase, but the definition of the equivalent server requires the analysis of the whole original network. We propose thus to use approximate aggregate servers whose characterization demands much less computation. Specifically, the characterization corresponds to the steady state equivalent server of the stations that we aim to aggregate and thus can be achieved by analyzing the involved stations in isolation. This way, approximations can be derived for any queuing network, but the precision of the results depends heavily on the topology and on the parameters of the model. We illustrate the approach on numerical examples and briefly discuss a set of criteria to identify the cases when it leads to satisfactory approximation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angius, A., Horváth, A.: Product Form Approximation of Transient Probabilities in Stochastic Reaction Networks. ENTCS 277, 3–14 (2011)Google Scholar
  2. 2.
    Angius, A., Horváth, A.: Approximate transient analysis of queuing networks by decomposition based on time-inhomogeneous markov arrival processes. In: Proc. of 8th International Conference on Performance Evaluation Methodologies and Tools (ValueTools 2014), Bratislava, Slovakia, pp. 1–8, (2014)Google Scholar
  3. 3.
    Angius, A., Horváth, A., Wolf, V.: Approximate transient analysis of queuing networks by quasi product forms. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol. 7984, pp. 22–36. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Balbo, G., Bruell, S.C.: Calculation of the moments of the waiting time distribution of FCFS stations in product form queueing networks. Computer Performance, 4(2), June 1983Google Scholar
  5. 5.
    Balsamo, S., Iazeolla, G.: An extension of Norton’s theorem for queueing networks. IEEE Trans. on Software Eng., SE-8 (1982)Google Scholar
  6. 6.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bazan, P., German, R.: Approximate transient analysis of large stochastic models with WinPEPSY-QNS. Computer Networks 53, 1289–1301 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Boucherie, R.J., Taylor, P.G.: Transient product form distributions in queueing networks. Discrete Event Dynamics Systems: Theory and Applications 3, 375–396 (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Bruell, S.C., Balbo, G.: Computational Algorithms for Closed Queueing Networks. The Computer Science Library, Elsevier North Holland (1980)MATHGoogle Scholar
  10. 10.
    Buzen, J.P.: Computational algorithms for closed queueing networks with exponential servers. Commun. ACM 16(9), 527–531 (1973)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queueing networks. IBM Journal of Res. and Dev. 1(1), 36–42 (1975)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chandy, K.M., Sauer, C.H.: Approximate methods for analyzing queueing network models of computing systems. ACM Comput. Surv. 10(3), 281–317 (1978)CrossRefMATHGoogle Scholar
  13. 13.
    Chandy, K.M., Sauer, C.H.: Computational algorithms for product form queueing networks. Commun. ACM 23(10), 573–583 (1980)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Chen, H., Mandelbaum, A.: Discrete flow networks: Bottleneck analysis and fluid approximations. Mathematics of Operations Research 16(2), 408–446 (1991)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Denning, P.J., Buzen, J.P.: The operational analysis of queueing network models. ACM Comput. Surv. 10(3), 225–261 (1978)CrossRefMATHGoogle Scholar
  16. 16.
    Gordon, W.J., Newell, G.F.: Cyclic queueing networks with restricted length queues. Operations Research 15(2), 266–277 (1967)CrossRefMATHGoogle Scholar
  17. 17.
    Kritzinger, P., van Wyk, S., Krezesinski, A.: A generalization of Norton’s theorem for multiclass queueing networks. Perform. Eval. 2, 98–107 (1982). ElsevierCrossRefMATHGoogle Scholar
  18. 18.
    Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press, New York (1983)MATHGoogle Scholar
  19. 19.
    Matis, T.I., Feldman, R.M.: Transient analysis of state-dependent queueing networks via cumulant functions. J. of Applied Probability 38(4), 841–859 (2001)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Whitt, W.: Decomposition approximations for time-dependent Markovian queueing networks. Operations Research Letters 24, 97–103 (1999)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alessio Angius
    • 1
  • András Horváth
    • 1
  • Sami M. Halawani
    • 2
  • Omar Barukab
    • 2
  • Ab Rahman Ahmad
    • 2
  • Gianfranco Balbo
    • 1
    • 2
  1. 1.Dipartimento di InformaticaUniversità di TorinoTurinItaly
  2. 2.Faculty of Computing and Information TechnologyKing Abdulaziz UniversityRabighKingdom of Saudi Arabia

Personalised recommendations