On Ranked Set Sampling Variation and Its Applications to Public Health Research

Chapter

Abstract

The foundation of any statistical inference depends on the collection of required data through some formal mechanism that should be able to capture the distinct characteristics of the population. One of the most common mechanisms to obtain such data is the simple random sample (SRS). In practice, a more structured sampling mechanism, such as stratified sampling, cluster sampling or systematic sampling, may be obtained to achieve a representative sample of the population of interest. A cost effective alternative approach to the aforementioned sampling techniques is the ranked set sampling (RSS). This approach to data collection was first proposed by McIntyre (Aust. J. Agr. Res. 3:385–390, 1952) as a method to improve the precision of estimated pasture yield. In RSS the desired information is obtained from a small fraction of the available units.

Keywords

Ranked set sample (RSS) Extreme ranked set sample (ERSS) Median ranked set sample (MRSS) Simple random sample (SRS) Simulation Naive estimator Regression estimator Ratio estimator Normal data Concomitant variable Varied set size ranked set sampling (VSRSS) Bilirubin Quantiles Bivariate ranked set sampling (BVRSS) Clinical trials 

References

  1. Al-Saleh, M.F., Al-Kadiri, M.A.: Double ranked set sampling. Stat. Probab. Lett. 48(2), 205–212 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. Al-Saleh, M.F., Zheng, G.: Estimation of bivariate characteristics using ranked set sampling. Aust. N. Z. J. Stat. 44, 221–232 (2002)MathSciNetCrossRefMATHGoogle Scholar
  3. Bahadur, R.R.: A note on quantiles in large samples. Ann. Math. Stat. 37, 577–590 (1966)MathSciNetCrossRefMATHGoogle Scholar
  4. Bickel, P.J., Doksum, K.A.: Mathematical Statistics. Holden-Day, Inc., Oakland (1977)MATHGoogle Scholar
  5. Chen, Z.: On ranked-set sample quantiles and their application. J. Stat. Plan. Inference 83, 125–135 (2000)CrossRefMATHGoogle Scholar
  6. Chen, Z., Zheng, G., Ghosh, K., Li, Z.: Linkage disequilibrium mapping of quantitative trait loci by selective genotyping. Am. J. Hum. Genet. 77, 661–669 (2005)CrossRefGoogle Scholar
  7. Chen, Z.: Ranked set sampling: Its essence and new applications. Environ. Ecol. Stat. 14, 355–363 (2007)Google Scholar
  8. Dell, T.R., Clutter, J.L.: Ranked set sampling theory with order statistics background. Biometrics 28, 545–555 (1972)CrossRefMATHGoogle Scholar
  9. Food and Agriculture Organization (FAO): Date Production and Protection. FAO Plant Production and Protection Paper 35. FAO (1982)Google Scholar
  10. Hansen, M.H., Hurwitz, W.N., Madow, W.G.: Sampling Survey Methods and Theory, vol. 2. Wiley, New York (1953)Google Scholar
  11. Kaur, A., Patil, G.P., Sinha, A.K., Tailie, C.: Ranked set sampling: an annotated bibliography. Environ. Ecol. Stat. 2, 25–54 (1995)CrossRefGoogle Scholar
  12. McIntyre, G.A.: A method for unbiased selective sampling using ranked set. Aust. J. Agr. Res. 3, 385–390 (1952)CrossRefGoogle Scholar
  13. Muttlak, H.A.: Median ranked set sampling. J. Appl. Stat. Sci. 6(4), 245–255 (1997)MathSciNetMATHGoogle Scholar
  14. Nelson, W.E., Behrman, R.E., Kliegman, R.M., Vaughan, V.C.: Textbook of Pediatrics, 4th edn. W. B. Saunders Company Harcourt Barace Jovanovich, Inc, Philadelphia (1992)Google Scholar
  15. Norris, R.C., Patil, G.P., Sinha, A.K.: Estimation of multiple characteristics by ranked set sampling methods. COENOSES 10(2&3), 95–111 (1995)Google Scholar
  16. Ozturk, O., MacEachern, S.N.: Order restricted randomized designs for control versus treatment comparison. Ann. Inst. Stat. Math. 56, 701–720 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. Patil, G.P., Sinha, A.K., Taillie, C.: Relative efficiency of ranked set sampling: comparison with regression estimator. Environmetrics 4, 399–412 (1993)CrossRefGoogle Scholar
  18. Patil, G.P., Sinha, A.K., Taillie, C.: Ranked set sampling for multiple characteristics. Int. J. Ecol. Environ. Sci. 20, 94–109 (1994)Google Scholar
  19. Patil, G.P., Sinha, A.K., Taillie, C.: Ranked set sampling: a bibliography. Environ. Ecol. Stat. 6, 91–98 (1999)CrossRefGoogle Scholar
  20. Samawi, H.M.: Stratified ranked set sample. Pak. J. Stat. 12(1), 9–16 (1996)MathSciNetMATHGoogle Scholar
  21. Samawi, H.M.: On quantiles estimation using ranked samples with some applications. JKSS 30(4), 667–678 (2001)MathSciNetGoogle Scholar
  22. Samawi, H.M.: Varied set size ranked set sampling with application to mean and ratio estimation. Int. J. Model. Simul. 32(1), 6–13 (2011)Google Scholar
  23. Samawi, H.M., Al-Sageer, O.A.: On the estimation of the distribution function using extreme and median ranked set sampling. Biom. J. 43(3), 357–373 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. Samawi, H.M., Al-Saleh, M.F.: On bivariate ranked set sampling for ratio and regression estimators. Int. J. Model. Simul. 27(4), 1–7 (2007)Google Scholar
  25. Samawi, H.M.: On double extreme ranked set sample with application to regression estimator. Metron LX(1–2), 53–66 (2002)Google Scholar
  26. Samawi, H.M., Muttlak, H.A.: Estimation of ratio using ranked set sampling. Biom. J. 38(6), 753–764 (1996)MathSciNetCrossRefMATHGoogle Scholar
  27. Samawi, H.M., Muttlak, H.A.: On ratio estimation using median ranked set sampling. J. Appl. Stat. Sci. 10(2), 89–98 (2001)MathSciNetGoogle Scholar
  28. Samawi, H.M., Siam, M.I.: Ratio estimation using stratified ranked set sample. Metron LXI(1), 75–90 (2003)MathSciNetGoogle Scholar
  29. Samawi, H.M., Ahmed, M.S., Abu Dayyeh, W.: Estimating the population mean using extreme ranked set sampling. Biom. J. 38(5), 577–586 (1996)CrossRefMATHGoogle Scholar
  30. Serfling, R.J.: Approximation Theorems of Mathematical Statistics. Wiley, New York (1980)CrossRefMATHGoogle Scholar
  31. Sinsheimer, J.S., Blangero, J., Lange, K.: Gamete competition models. Am. J. Hum. Genet. 66, 1168–1172 (2000)CrossRefGoogle Scholar
  32. Slatkin, M.: Disequilibrium mapping of a quantitative-trait locus in an expanding population. Am. J. Hum. Genet. 64, 1765–1773 (1999)CrossRefGoogle Scholar
  33. Spielman, R.S., McGinnis, R.E., Ewens, W.J.: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993)Google Scholar
  34. Stokes, S.L., Sager, T.W.: Characterization of a ranked set sample with application to estimating distribution functions. J. Am. Stat. Assoc. 83, 374–381 (1988)MathSciNetCrossRefMATHGoogle Scholar
  35. Sukhatme, P.V., Sukhatme, B.V.: Sampling Theory of Surveys with Applications. Iowa State University Press, Ames (1970)MATHGoogle Scholar
  36. Takahasi, K., Wakimoto, K.: On unbiased estimates of the population mean based on the stratified sampling by means of ordering. Ann. Inst. Stat. Math. 20, 1–31 (1968)MathSciNetCrossRefMATHGoogle Scholar
  37. William, E., Ahmed, M., Ahmed, O., Zaki, L., Arash, N., Tamer, B., Subhy, R.: Date Palm in the GCC countries of the Arabian Peninsula. http://www.icarda.org/aprp/datepalm/introduction/intro-body.htm (2004)
  38. Xu, X.P., Rogus, J.J., Terwedom, H.A., et al.: An extreme-sib-pair genome scan for genes regulating blood pressure. Am. J. Hum. Genet. 64, 1694–1701 (1999)CrossRefGoogle Scholar
  39. Yu, L.H., Lam, K.: Regression estimator in ranked set sampling. Biometrics 53, 1070–1080 (1997)CrossRefMATHGoogle Scholar
  40. Zheng, G., Ghosh, K., Chen, Z., Li, Z.: Extreme rank selections for linkage analysis of quantitative trait loci using selected sibpairs. Ann. Hum. Genet. 70, 857–866 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of BiostatisticsJiann-Ping Hsu College of Public Health, Georgia Southern UniversityStatesboroUSA
  2. 2.Department of BiostatisticsJiann-Ping Hsu College of Public Health, Georgia Southern UniversityStatesboroUSA

Personalised recommendations