Patterns of Violence and Diet Among Children During a Time of Imperial Decline and Climate Change in the Ancient Peruvian Andes



This chapter explores how an ongoing drought (ca. 900–1350 C.E.), which overlaps with the decline of the Wari Empire (ca. 1100 C.E.), altered the frequency and intensity of violence and food consumption practices among children living in the former Wari imperial core in Ayacucho, Peru. The relationship between violent conflict and diet among juveniles is examined as part of a larger investigation into how the after-effects of sociopolitical decline and an ongoing drought may mutually reinforce and exacerbate detrimental effects on childhood health. Childhood cranial trauma data are used to reconstruct levels and kinds of violence, and stable isotope data from carbonates in the dental enamel apatite and dentin collagen are used to reconstruct childhood diet. Results show a significant increase in lethal violence against children relative to the preceding Wari era. The nitrogen isotope data from dentin collagen suggest that childhood diets were similar in terms of protein consumption in the two eras, but carbon isotope data from both enamel apatite and dentin show that post-Wari children and infants (and their breastfeeding mothers) consumed significantly less carbon-enriched foods such as maize (Zea mays)—a socially valued crop in the Andes—than Wari-era children. A case of cranial trepanation on a child is also presented.


Violence Trauma Childhood Peru Andes Bioarchaeology Wari 



We would like to express our gratitude to Jose Ochatoma at the Universidad Nacional de San Cristóbal de Huamanga for granting access to the skeletal collections discussed here, and we thank Taylor Macdonald for assistance in editing the bibliography. We also thank the following funding agencies for providing support for this study: The National Science Foundation-Archaeology and Biological Anthropology Divisions; The Wenner-Gren Foundation for Anthropological Research (#8169); the Nashville School of Science and Math at Vanderbilt; the College of A&S at Vanderbilt. Finally, we thank Amber VanDerwarker and Greg Wilson for inviting us to participate in the conference at UCSB and to contribute to this edited volume.


  1. Ambrose, S. H. (1991). Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. Journal of Archaeological Science, 18(3), 293–317.Google Scholar
  2. Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive considerations. In M. K. Sandford (Ed.), Investigations of ancient human tissue: Chemical analyses in anthropology (pp. 59–130). Philadelphia, USA: Gordon and Breach Science Publishers.Google Scholar
  3. Ambrose, S. H., & DeNiro, M. J. (1987). Bone nitrogen isotope composition and climate. Nature, 325(6101), 201.Google Scholar
  4. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. Lambert & G. Grupe (Eds.), Prehistoric human bone: Archaeology at the molecular level (pp. 1–38). Berlin: Springer.Google Scholar
  5. Ambrose, S. H., Bulter, B. M., Hanson, D. B., Hunter-Anderson, R. L., & Krueger, H. K. (1997). Stable isotopic analysis of human diet in the Marianas Archipelago, Western Pacific. American Journal of Physical Anthropology, 104(3), 343–361.Google Scholar
  6. Andrushko, V. A., & Torres, E. C. (2011). Skeletal evidence for Inca warfare from the Cuzco region of Peru. American Journal of Physical Anthropology, 146(3), 361–372.Google Scholar
  7. Andrushko, V. A., & Verano, J. W. (2008). Prehistoric trepanation in the Cuzco region of Peru: A view into an ancient Andean practice. American Journal of Physical Anthropology, 137(1), 4–13.Google Scholar
  8. Andrushko, V. A., Buzon, M. R., Gibaja, A. M., McEwan, G. F., Simonetti, A., & Creaser, R. A. (2011). Investigating a child sacrifice event from the Inca heartland. Journal of Archaeological Science, 38(2), 323–333.Google Scholar
  9. Arkush, E. N. (2008). War, chronology, and causality in the Titicaca Basin. Latin American Antiquity, 19(4), 339–373.Google Scholar
  10. Arkush, E. N. (2010). Hillforts of the ancient Andes: Colla warfare, society, and landscape. Gainesville: University Press of Florida.Google Scholar
  11. Arkush, E., & Tung, T. A. (2013). Patterns of war in the Andes from the Archaic to the Late Horizon: Insights from settlement patterns and cranial trauma. Journal of Archaeological Research, 63(4), 307–369.Google Scholar
  12. Bandelier, A. F. (1904). Aboriginal trephining in Bolivia. American Anthropologist, 6(4), 440–446.Google Scholar
  13. Bauer, B. S., Kellett, L. C., Aráoz Silva, M., Hyland, S., & Socualaya Dávila, C. (2010). The Chanka: Archaeological research in Andahuaylas (Apurimac). Peru. Los Angeles: Cotsen Institute of Archaeology Press, University of California.Google Scholar
  14. Benson, L. V., Pauketat, T. R., & Cook, E. R. (2009). Cahokia’s boom and bust in the context of climate change. American Antiquity, 74(3), 467–483.Google Scholar
  15. Berryman, H. E., & Jones Haun, S. (1996). Applying forensic techniques to interpret cranial fracture patterns in an archaeological specimen. International Journal of Osteoarchaeology, 6(1), 2–9.Google Scholar
  16. Betancourt, T. S., Borisova, I. I., de la Soudière, M., & Williamson, J. (2011). Sierra Leone’s child soldiers: War exposures and mental health problems by gender. Journal of Adolescent Health, 49(1), 21–28.Google Scholar
  17. Billman, B. R., Lambert, P. M., & Leonard, B. L. (2000). Cannibalism, warfare and drought in the Mesa Verde region during the twelfth century A.D. American Antiquity, 65(1), 145–178.Google Scholar
  18. Binford, M. W., Kolata, A. L., Brenner, M., Janusek, J. W., Seddon, M. T., Abbott, M., & Curtis, J. H. (1997). Climate variation and the rise and fall of an Andean civilization. Quaternary Research, 47(2), 235–248.Google Scholar
  19. Bird, B. W., Abbott, M. B., Vuille, M., Rodbell, D. T., Stansell, N. D., Rosenmeier M. F. (2011). A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proceedings of the National Academy of Sciences, 108(21), 8583–8588.Google Scholar
  20. Bragayrac, D. E. (1991). Archaeological excavations in the Vegachayoq Moqo Sector of Huari. In W. H. Isbell & G. F. McEwan (Eds.), Huari administrative structure: Prehistoric monumental architecture and state government (pp. 71–80). Washington, D.C.: Dumbarton Oaks.Google Scholar
  21. Buikstra, J. E., & Ubelaker, D. H. (1994). Standards for data collection from human skeletal remains. Fayettville: Arkansas Archaeological Survey.Google Scholar
  22. Burger, R. L., & van der Merwe, N. J. (1990). Maize and the origins of highland Chavin civilization: An isotopic perspective. American Anthropologist, 92(1), 85–95.Google Scholar
  23. Buzon, M. R., Conlee, C. A., & Bowen, G. J. (2011). Refining oxygen isotope analysis in the Nasca region of Peru: An investigation of water sources and archaeological samples. International Journal of Osteoarchaeology, 21(4), 446–455.Google Scholar
  24. Cadwallader, L., Beresford-Jones, D. G., Whaley, O. Q., & O’Connell, T. C. (2012). The Signs of maize? A reconsideration of what δ13C values say about palaeodiet in the Andean region. Human Ecology, 40(4), 487–509.Google Scholar
  25. Carneiro, R. L. (1970). A theory of the origin of the state. Science, 169(3947), 733–738.Google Scholar
  26. Children’s Bureau (2012). Child maltreatment 2012—Data tables. In Services U.S. Department of Health and Human Services. Administration for Children & Families, Washington D.C.Google Scholar
  27. Conlee, C. A. (2006). Regeneration as transformation: Post-collapse society in Nasca, Peru. In G. M. Schwartz & J. J. Nichols (Eds.), After collapse: The regeneration of complex societies (pp. 99–113). Tucson: University of Arizona Press.Google Scholar
  28. Coplen, T. B. (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry, 66(2), 273–276.Google Scholar
  29. Coutts, K. H., Chu, A., & Krigbaum, J. (2011). Paleodiet in Late Preceramic Peru: Preliminary isotopic data from Bandurria. The Journal of Island and Coastal Archaeology, 6(2), 196–210.Google Scholar
  30. Covey, A. R. (2008). Multiregional perspectives on the archaeology of the Andes during the late intermediate period (ca. A.D. 1000–1400). Journal of Archaeoligical Research, 16(3), 287–338.Google Scholar
  31. Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.Google Scholar
  32. deMenocal, P. B. (2001). Cultural responses to climate change during the Late Holocene. Science, 292(5517), 667–673.Google Scholar
  33. DeNiro, M. J. (1985). Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature, 317(6040), 806–809.Google Scholar
  34. Derluyn, I., Broekaert, E., Schuyten, G., & Temmerman, E. D. (2004). Post-traumatic stress in former Ugandan child soldiers. The Lancet, 363(9412), 861–863.Google Scholar
  35. DeSantis, L. R. G., Feranec, R. S., & MacFadden, B. J. (2009). Effects of global warming on ancient mammalian communities and their environments. PLoS ONE, 4(6), e5750.Google Scholar
  36. Dillehay, T. D., & Kolata, A. L. (2004). Long-term human response to uncertain environmental conditions in the Andes. Proceedings of the National Academy of Sciences, 101(12), 4325–4330.Google Scholar
  37. Erickson, C. L. (1999). Neo-evironmental determinism and agragrian ‘collapse’ in Andean prehistory. Antiquity, 73(281), 634–642.Google Scholar
  38. Farmer, P. (1996). On suffering and structural violence: A view from below. Daedalus, 125(1), 261–283.Google Scholar
  39. Finucane, B. (2009). Maize and sociopolitical complexity in the Ayacucho Valley, Peru. Current Anthropology, 50(4), 535–545.Google Scholar
  40. Finucane, B., Maita, P., & Isbell, W. H. (2006). Human and animal diet at Conchopata, Peru: Stable isotope evidence for maize agriculture and animal management practices during the Middle Horizon. Journal of Archaeological Science, 33(12), 1766–1776.Google Scholar
  41. Fisher, C. T. (2005). Demographic and landscape change in the Lake Pátzcuaro Basin, Mexico: Abandoning the Garden. American Anthropologist, 107(1), 87–95.Google Scholar
  42. Fogel, M. L., Tuross, N., & Owsley, D. W. (1989). Nitrogen isotope tracers of human lactation in modern and archaeological populations. Carnegie Institution of Washington Yearbook, 88, 111–117.Google Scholar
  43. Fricke, H. C., O’Neil, J. R., & Lynnerup, N. (1995). Oxygen isotope composition of human tooth enamel from Medieval Greenland: Linking climate and society. Geology, 23(10), 869–872.Google Scholar
  44. Gaither, C. M., & Murphy, M. S. (2012). Consequences of conquest? The analysis and interpretation of subadult trauma at Puruchuco-Huaquerones, Peru. Journal of Archaeological Science, 39(2), 467–478.Google Scholar
  45. Galloway, A. (1999a). The biomechanics of fracture production. In A. Galloway (Ed.), Broken bones: Anthropological analysis of blunt force trauma (pp. 35–62). Springfield, IL: Charles C. Thomas.Google Scholar
  46. Galloway, A. (1999b). Fracture patterns and skeletal morphology: The axial skeleton. In A. Galloway (Ed.), Broken bones: Anthropological analysis of blunt force trauma (pp. 81–112). Springfield, IL: Charles C. Thomas.Google Scholar
  47. Galtung, J. (1969). Violence, peace, and peace research. Journal of Peace Research, 6(3), 167–191.Google Scholar
  48. Goodman, A. H., & Leatherman, T. L. (2003). Traversing the chasm between biology and culture: An introduction. In A. H. Goodman & T. L. Leatherman (Eds.), Building a new biocultural synthesis: Political-economic perspectives on human biology (pp. 3–41). Ann Arbor: The University of Michigan Press.Google Scholar
  49. Harrod, R. P., & Martin, D. L. (2014). Bioarchaeology of climate change and violence: Ethical considerations. New York: Springer.Google Scholar
  50. Hastorf, C. A. (1993). Pre-hispanic political change and the role of maize in the central Andes of Peru. American Anthropologist, 95(1), 115–138.Google Scholar
  51. Hastorf, C. A., & Johannessen, S. (1994). Becoming corn-eaters in prehistoric America. In S. Johannessen & C. A. Hastorf (Eds.), Corn and culture in the prehistoric New World (pp. 427–443). Boulder: Westview Press.Google Scholar
  52. Hewitt, B. R. (2013). Foreigners among the dead at Túcume, Peru: Assessing residential mobility using isotopic tracers. Unpublished Ph.D. dissertation, Department of Anthropology. London, Canada: University of Western Ontario.Google Scholar
  53. Kamp, K. (2001). Where have all the children gone? The archaeology of childhood. Journal of Archaeological Method and Theory, 8(1), 1–34.Google Scholar
  54. Kellner, C. M., & Schoeninger, M. J. (2007). A simple carbon isotope model for reconstructing prehistoric human diet. American Journal of Physical Anthropology, 133(4), 1112–1127.Google Scholar
  55. Kellner, C. M., & Schoeninger, M. J. (2008). Wari’s imperial influence on local Nasca diet: The stable isotope evidence. Journal of Anthropological Archaeology, 27(2), 226–243.Google Scholar
  56. Kelly, R. C. (2000). Warless societies and the origin of war. Ann Arbor: University of Michigan Press.Google Scholar
  57. Kemp, B. M., Tung, T. A., & Summar, M. L. (2009). Genetic continuity after the collapse of the Wari empire: Mitochondrial DNA profiles from Wari and post-Wari populations in the ancient Andes. American Journal of Physical Anthropology, 140(1), 80–91.Google Scholar
  58. Klaus, H. (2010). Bioarchaeology of human sacrifice: violence, identity and the evolution of ritual killing at Cerro Cerrillos, Peru. Antiquity, 84(326), 1102–1123.Google Scholar
  59. Knudson, K. J. (2009). Oxygen isotope analysis in a land of environmental extremes: The complexities of isotopic work in the Andes. International Journal of Osteoarchaeology, 19(2), 171–191.Google Scholar
  60. Knudson, K. J., & Price, T. D. (2007). Utility of multiple chemical techniques in archaeological residential mobility studies: Case studies from Tiwanaku- and Chiribaya-affiliated sites in the Andes. American Journal of Physical Anthropology, 132(1), 25–39.Google Scholar
  61. Knudson, K. J., Aufderheide, A. E., & Buikstra, J. E. (2007). Seasonality and paleodiet in the Chiribaya polity of southern Peru. Journal of Archaeological Science, 34(3), 451–462.Google Scholar
  62. Koch, P. L. (1998). Isotopic Reconstruction of Past Continental Environments. Annual Review of Earth and Planetary Sciences, 26, 573–613.Google Scholar
  63. Koch, P. L., Tuross, N., & Fogel, M. (1997). The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hyydroxylapatite. Journal of Archaeological Science, 24(5), 417–429.Google Scholar
  64. Kolata, A. L., Binford, M. W., Brenner, M., Janusek, J. W., & Ortloff, C. (2000). Environmental thresholds and the empirical reality of state collapse: A response to Erickson (1999). Antiquity, 74(284), 424–426.Google Scholar
  65. Korbin, J. E. (2003). Children, childhoods, and violence. Annual Review of Anthropology, 32, 431–446.Google Scholar
  66. Kurin, D. S. (2012). The bioarchaeology of collapse: Ethnogenesis and ethnocide in post-imperial Andahuaylas, Peru (AD 900–1250). Unpublished Ph.D. dissertation, Department of Anthropology. Nashville: Vanderbilt University.Google Scholar
  67. Kurin, D. S. (2013). Trepanation in south-central Peru during the early late intermediate period (ca. AD 1000–1250). American Journal of Physical Anthropology, 152(4), 484–494.Google Scholar
  68. Lambert, P. M. (1997). Patterns of violence in prehistoric hunter-gatherer societies of coastal California. In D. L. Martin & D. W. Frayer (Eds.), Troubled times: Violence and warfare in the past (pp. 77–109). Australia: Gordon and Breach Publishers.Google Scholar
  69. Lambert, P. M. (2002). The archaeology of war: A North American perspective. Journal of Archaeological Research, 10(3), 207–241.Google Scholar
  70. Lambert, P. M., Gagnon, C. M., Billman, B., Katzenberg, M. A., Carcelén, J., & Tykot, R. H. (2012). Bone chemistry at Cerro Oreja: A stable isotope perspective on the development of a regional economy in the Moche Valley, Peru during the Early Intermediate Period. Latin American Antiquity, 23(2), 144–166.Google Scholar
  71. Lee-Thorp, J. A., Sealy, J. C., & van der Merwe, N. J. (1989). Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. Journal of Archaeological Science, 16(6), 585–599.Google Scholar
  72. Leoni, J. B. (2004). Ritual, place, and memory in the construction of community identity: A diachronic view from Ñawinpukyo (Ayacucho, Peru). Unpublished Ph.D. dissertation, Department of Anthropology. Binghamton: State University of New York.Google Scholar
  73. Longinelli, A. (1984). Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48(2), 385–390.Google Scholar
  74. Lovell, N. C. (1997). Trauma analysis in paleopathology. Yearbook of Physical Anthropology, 40, 139–170.Google Scholar
  75. Luz, B., Kolodny, Y., & Horowitz, M. (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta, 48(8), 1689–1693.Google Scholar
  76. Mekota, A. M., Grupe, G., Ufer, S., & Cuntz, U. (2006). Serial analysis of stable nitrogen and carbon isotopes in hair: Monitoring starvation and recovery phases of patients suffering from anorexia nervosa. Rapid Communications in Mass Spectrometry, 20(10), 1604–1610.Google Scholar
  77. Merbs, C. F. (1989). Trauma. In M. Y. Iscan (Ed.), Reconstruction of life from the skeleton. New York: Liss.Google Scholar
  78. Moore, J. D. (1991). Cultural responses to environmental catastrophes: Post-El Nino subsistence on the prehistoric north coast of Peru. Latin American Antiquity, 2(1), 27–47.Google Scholar
  79. Murphy, M. S., Gaither, C., Goycochea, E., Verano, J. W., & Cock, G. (2010). Violence and weapon-related trauma at Puruchuco-Huaquerones, Peru. American Journal of Physical Anthropology, 142(4), 636–649.Google Scholar
  80. Ortner, D. J. (2003). Identification of pathological conditions in human skeletal remains (2nd ed.). Amsterdam: Academic Press.Google Scholar
  81. Price, T. D., & Burton, J. H. (2011). An introduction to archaeological chemistry. New York: Springer.Google Scholar
  82. Price, T. D., Burton, J. H., & Bentley, R. A. (2002). The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry, 44(1), 117–135.Google Scholar
  83. Roberts, S. B., Coward, W. A., Ewing, G., Savage, J., Cole, T. J., & Lucas, A. (1988). Effect of weaning on accuracy of doubly labeled water method in infants. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 254(4), R622–R627.Google Scholar
  84. Sauer, N. J. (1998). The timing of injuries and manner of death: Distinguishing among antermortem, perimortem and postmortem trauma. In J. K. Reichs (Ed.), Forensic osteology: Advances in the identification of human remains (2nd ed., pp. 321–332). Springfield, IL: Charles C. Thomas Publisher.Google Scholar
  85. Schoeninger, M. J., & DeNiro, M. J. (1984). Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta, 48(4), 625–639.Google Scholar
  86. Schoeninger, M. J., DeNiro, M. J., & Tauber, H. (1983). Stable nitrogen isotope ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science, 220(4604), 1381–1383.Google Scholar
  87. Schreiber, K. J. (1992). Wari imperialism in Middle Horizon Peru. Ann Arbor: Museum of Anthropology University of Michigan.Google Scholar
  88. Schreiber, K. J., & Lancho Rojas, J. (2003). Irrigation and society in the Peruvian desert: The puquios of Nasca. Lanham, MD: Lexington Books.Google Scholar
  89. Schug, G. R. (2011). Bioarchaeology and climate change: A view from South Asian prehistory. Gainesville: University Press of Florida.Google Scholar
  90. Schwarcz, H. P. (1991). Some theoretical aspects of isotope paleodiet studies. Journal of Archaeological Science, 18(3), 261–275.Google Scholar
  91. Schwarcz, H. P., & Schoeninger, M. J. (1991). Stable isotope analyses in human nutritional ecology. American Journal of Physical Anthropology, 34(S13), 283–321.Google Scholar
  92. Sealy, J., Armstrong, R., & Schrire, C. (1995). Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity, 69(263), 290–300.Google Scholar
  93. Shimada, I., Thompson, L. G., Mosley-Thompson, E., & Schaaf, C. B. (1991). Cultural impacts of severe droughts in the prehistoric Andes: Application of a 1,500-year ice core precipitation record. World Archaeology, 22(3), 247–270.Google Scholar
  94. Slovak, N. M., & Paytan, A. (2011). Fisherfolk and farmers: Carbon and nitrogen isotope evidence from Middle Horizon Ancón, Peru. International Journal of Osteoarchaeology, 21(3), 253–267.Google Scholar
  95. Solano Ramos, F., & Guerrero Anaya, V. (1981). Estudio arqueológico en el sector de Monqachayoq-Wari, Arqueologia. Unpublished B.A. thesis. Ayacucho: Universidad Nacional de San Cristobal de Huamanga.Google Scholar
  96. Stanish, C. (2003). Ancient Titicaca: The evolution of complex society in southern Peru and northern Bolivia. Berkeley: University of California Press.Google Scholar
  97. Starling, S. P., Holden, J. R., & Jenny, C. (1995). Abusive head trauma: The relationship of perpetrators to their victims. Pediatrics, 95(2), 259–262.Google Scholar
  98. Sultana, F. (2014). Gendering climate change: Geographical insights. The Professional Geographer, 66(3), 372–381.Google Scholar
  99. Ta’ala, S. C., Berg, G. E., & Haden, K. (2006). Blunt force cranial trauma in the Cambodian killing fields. Journal of Forensic Science, 51(5), 996–1001.Google Scholar
  100. Thompson, L. G., Mosley-Thompson, E., Bolzan, J. F., & Koci, B. R. (1985). A 1500-year record of the tropical precipitation in ice cores from the Quelccaya ice cap, Peru. Science, 229(4717), 971–973.Google Scholar
  101. Thompson, L. G., Moseley-Thompson, E., Davis, M. E., Zagorodnov, V. S., Howat, I. M., Mikhalenko, V. N., & Lin, P.-N. (2013). Annually resolved ice core records of tropical climate variability over the past ~1800 years. Science, 340(6161), 945–950.Google Scholar
  102. Tieszen, L. L., & Chapman, M. (1992). Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama desert of northern Chile. Proceedings of the First World Congress on Mummy Studies, 2, 409–425.Google Scholar
  103. Tomczak, P. D. (2003). Prehistoric diet and socioeconomic relationships within the Osmore Valley of southern Peru. Journal of Anthropological Archaeology, 22(3), 262–278.Google Scholar
  104. Torres-Rouff, C. (2011). Hiding inequality beneath prosperity: patterns of cranial injury in middle period San Pedro de Atacama, Northern Chile. American Journal of Physical Anthropology, 146(1), 28–37.Google Scholar
  105. Torres-Rouff, C., & Costa Junqueira, M. A. (2005). Violence in times of change: The Late Intermediate Period in San Pedro de Atacama. Chungara, 37(1), 75–83.Google Scholar
  106. Torres-Rouff, C., & Costa Junqueira, M. A. (2006). Interpersonal violence in prehistoric San Pedro de Atacama, Chile: Behavioral implications of environmental stress. American Journal of Physical Anthropology, 130(1), 60–70.Google Scholar
  107. Toyne, J. M. (2011). Interpretations of pre-Hispanic ritual violence at Tucume, Peru, from cut mark analysis. Latin American Antiquity, 22(4), 505–523.Google Scholar
  108. Toyne, J. M., White, C. D., Verano, J. W., Uceda Castillo, S., Millaire, J. F., & Longstaffe, F. J. (2014). Residential histories of elites and sacrificial victims at Huacas de Moche, Peru, as reconstructed from oxygen isotopes. Journal of Archaeological Science, 42(1), 15–28.Google Scholar
  109. Tung, T. A. (2007). Trauma and violence in the Wari empire of the Peruvian Andes: Warfare, raids, and ritual fights. American Journal of Physical Anthropology, 133(3), 941–956.Google Scholar
  110. Tung, T. A. (2008). Violence after imperial collapse: A study of cranial trauma among Late Intermediate period burials from the former Wari capital, Ayacucho, Peru. Nawpa Pacha, 29, 101–118.Google Scholar
  111. Tung, T. A. (2012). Violence, ritual, and the Wari Empire: A social bioarchaeology of imperialism in the ancient Andes. Gainesville: University Press of Florida.Google Scholar
  112. Tung, T. A. (2014). Making warriors, making war: Violence and militarism in the Wari empire. In A. K. Scherer & J. Verano (Eds.), Embattled bodies, embattled places: War in Pre-Columbian America (pp. 227–256). Washington, D.C.: Dumbarton Oaks.Google Scholar
  113. Tung, T. A., & Knudson, K. J. (2010). Childhood lost: Abductions, sacrifice, and trophy heads of children in the Wari empire of the ancient Andes. Latin American Antiquity, 21(1), 44–66.Google Scholar
  114. Turner, B. L., Kamenov, G. D., Kingston, J. D., & Armelagos, G. J. (2009). Insights into immigration and social class at Machu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. Journal of Archaeological Science, 36(2), 317–332.Google Scholar
  115. Turner, B. L., Kingston, J. D., & Armelagos, G. (2010). Variation in dietary histories among the immigrants of Machu Picchu: Carbon and nitrogen isotope evidence. Chungara: Revista de Antropología Chilena, 42(2), 515–534.Google Scholar
  116. Turner, B. L., Klaus, H. D., Livengood, S. V., Brown, L. E., Saldaña, F., & Wester, C. (2013). The variable roads to sacrifice: Isotopic investigations of human remains from Chotuna-Huaca de los Sacrificios, Lambayeque, Peru. American Journal of Physical Anthropology, 151(1), 22–37.Google Scholar
  117. Veierra, R. K., & MacNeish, R. S. (1981). The stratigraphy of the other cave excavations. In R. S. MacNeish, A. Cook Garcia, L. G. Lumbreras, R. K. Vierra, & A. Nelken-Turner (Eds.), Prehistory of Ayacucho Basin, Peru: Volume II, excavations and chronology (pp. 113–148). Ann Arbor: The University of Michigan Press.Google Scholar
  118. Verano, J. W., & Andrushko, V. A. (2010). Cranioplasty in ancient Peru: A critical review of the evidence, and a unique case from the Cuzco area. International Journal of Osteoarchaeology, 20(3), 269–279.Google Scholar
  119. Walker, P. L. (1997). Wife beating, boxing, and broken noses: Skeletal evidence for the cultural patterning of violence. In D. K. Martin & D. W. Frayer (Eds.), Troubled times: Violence and warfare in the past (pp. 145–179). Australia: Gordon and Breach Publishers.Google Scholar
  120. Walker, P. L. (2001). A bioarchaeological perspective on the history of violence. Annual Review of Anthropology, 30, 573–596.Google Scholar
  121. Waters-Rist, A. L., Bazaliiskii, V. I., Weber, A. W., & Katzenberg, M. A. (2011). Infant and child diet in Neolithic hunter-fisher-gatherers from Cis-Baikal, Siberia: Intra-long bone stable nitrogen and carbon isotope ratios. American Journal of Physical Anthropology, 146(2), 225–241.Google Scholar
  122. Webb, E. C. (2010). Residential mobility, palaeodiet and stress in Nasca, Peru: Biogeochemical and biomolecular analyses of archaeological tissues. Unpublished Ph.D. dissertation, Department of Anthropology. London, Canada: University of Western Ontario.Google Scholar
  123. Webb, E. C., White, C. D., & Longstaffe, F. J. (2013a). Dietary shifting in the Nasca Region as inferred from the carbon- and nitrogen-isotope compositions of archaeological hair and bone. Journal of Archaeological Science, 40(1), 129–139.Google Scholar
  124. Webb, E. C., White, C. D., & Longstaffe, F. J. (2013b). Exploring geographic origins at Cahuachi using stable isotopic analysis of archaeological human tissues and modern environmental waters. International Journal of Osteoarchaeology, 23(6), 698–715.Google Scholar
  125. Wernke, S. A. (2011). Convergences: Producing early colonial hybridity at a doctrina in highland Peru. In M. Liebmann & M. S. Murphy (Eds.), Enduring conquests: Rethinking the archaeology of resistance to Spanish colonialism in the Americas (pp. 77–101). Santa Fe: School of Advanced Research.Google Scholar
  126. Williams, J. S., & Katzenberg, A. M. (2012). Seasonal fluctuations in diet and death during the late horizon: A stable isotopic analysis of hair and nail from the central coast of Peru. Journal of Archaeological Science, 39(1), 41–57.Google Scholar
  127. Williams, P. R. (2002). Rethinking disaster-induced collapse in the demise of the Andean highland states: Wari and Tiwanaku. World Archaeology, 33(3), 361–374.Google Scholar
  128. Wilson, A. S., Taylor, T., Ceruti, M. C., Chavez, J. A., Reinhard, J., Grimes, V., et al. (2007). Stable isotope and DNA evidence for ritual sequences in Inca child sacrifice. Proceedings of the National Academy of Sciences, 104(42), 16456–16461.Google Scholar
  129. Wright, L. E., & Schwarcz, H. P. (1998). Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeedings and weaning in prehistory. American Journal of Physical Anthropology, 106(1), 1–18.Google Scholar
  130. Wright, L. E., & Schwarcz, H. P. (1999). Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentin: Infant diets at Kaminaljuyú. Journal of Archaeological Science, 26(9), 1159–1170.Google Scholar
  131. Zhang, D. D., Brecke, P., Lee, H. F., He, Y.-Q., & Zhang, J. (2007). Global climate change, war, and population decline in recent human history. Proceedings of the National Academy of Science, 104(49), 19214–19219.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Vanderbilt UniversityNashvilleUSA
  2. 2.University of CaliforniaBerkeleyUSA
  3. 3.Arizona State UniversityTempeUSA
  4. 4.Martin Luther King Jr. High SchoolNashvilleUSA

Personalised recommendations