Advertisement

A Models Comparison to Estimate Commuting Trips Based on Mobile Phone Data

  • Carlos A. R. PinheiroEmail author
  • Véronique Van Vlasselaer
  • Bart Baesens
  • Alexandre G. Evsukoff
  • Moacyr A. H. B. Silva
  • Nelson F. F. Ebecken
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 349)

Abstract

Upon an overall human mobility behavior within the city of Rio de Janeiro, this paper describes a methodology to predict commuting trips based on the mobile phone data. This study is based on the mobile phone data provided by one of the largest mobile carriers in Brazil. Mobile phone data comprises a reasonable variety of information about subscribers’ usage, including time and location of call activities throughout urban areas. This information was used to build subscribers’ trajectories, describing then the most relevant characteristics of commuting over time. An Origin-Destination (O-D) matrix was built to support the estimation for the number of commuting trips. Traditional approaches inherited from transportation systems, such as gravity and radiation models – commonly employed to predict the number of trips between locations(regularly upon large geographic scales) – are compared to statistical and data mining techniques such as linear regression, decision tree and artificial neural network. A comparison of these models shows that data mining models may perform slightly better than the traditional approaches from transportation systems when historical information are available. In addition to that, data mining models may be more stable for great variances in terms of the number of trips between locations and upon different geographic scales. Gravity and radiation models work very well based on large geographic scales and they hold a great advantage, they are much easier to be implemented. On the other hand, data mining models offer more flexibility in incorporating additional attributes about locations – such as number of job positions, available entertainments, schools and universities posts, among others –and historical information about the trips over time.

Keywords

human mobility behavior trips prediction transportation models pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    González, M., Hidalgo, C., Barabási, A.: Understanding individual human mobility patterns. Nature 453, 779–782 (2008)CrossRefGoogle Scholar
  2. 2.
    Simini, F., González, M., Maritan, A., Barabási, A.-L.: A universal model for mobility and migration patterns. Nature 484, 96–100 (2012)CrossRefGoogle Scholar
  3. 3.
    Rubio, A., Sanchez, A., Martinez, E.: Adaptive non-parametric identification of dense areas using cell phone records for urban analysis. Engineering Applications of Artificial Intelligence 26, 551–563 (2013)CrossRefGoogle Scholar
  4. 4.
    Liu, F., Janssens, D., Wets, G., Cools, M.: Annotating mobile phone location data with activity purposes using machine learning algorithms. Expert Systems with Applications 40(8), 3299–3311 (2013)CrossRefGoogle Scholar
  5. 5.
    Candia, J., González, M., Wang, P., Schoenharl, T., Madey, G., Barabasi, A.-L.: Uncovering individual and collective human dynamics from mobile phone records. Journal of Physics A: Mathematical and Theoretical 41(224015) (2008)Google Scholar
  6. 6.
    Schneider, C., Belik, V., Couronné, T., Smoreda, Z., González, M.: Unraveling daily human mobility motifs. Journal of The Royal Society Interface 10(84), 20130246 (2013)CrossRefGoogle Scholar
  7. 7.
    Yan, X.-Y., Zhao, C., Fan, Y., Di, Z., Wang, W.-X.: Universal predictability of mobility patterns in cities. Physics and Society, arXiv:1307.7502 (2013)Google Scholar
  8. 8.
    Park, J., Lee, D., González, M.: The eigenmode analysis of human motion. Journal of Statistical Mechanics: Theory and Experiment 2010 (2010)Google Scholar
  9. 9.
    Jiang, S., Fiore, G., Yang, Y., Ferreira, J., Frazzoli, E., González, M.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing (2013)Google Scholar
  10. 10.
    Masucci, A., Serras, J., Johanson, A., Batty, M.: Gravity vs radiation model: on the importance of scale and heterogeneity in commuting flows. arXiv:1206.5735 (2012)Google Scholar
  11. 11.
    Lee, A., Chen, Y.-A., Ip, W.-C.: Mining frequent trajectories patterns in spatial-temporal databases. Information Sciences 179, 2218–2231 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Järv, O., Ahas, R., Witlox, F.: Understanding monthly variability in human activity spaces: A twelve-month study using mobile phone call detail records. Transportation Research Part C 38, 122–135 (2014)CrossRefGoogle Scholar
  13. 13.
    Sun, J.B., Yuan, J., Wang, Y., Si, H.B., Shan, X.M.: Exploring space-time structure human mobility in urban space. Physica A 390, 929–942 (2011)CrossRefGoogle Scholar
  14. 14.
    Zong, E., Tan, B., Mo, K., Yang, Q.: User demographics prediction based on mobile data. Pervasive Mobile Computing 9(6), 823–837 (2013)CrossRefGoogle Scholar
  15. 15.
    Makse, H.A., Havlin, S., Stanley, H.E.: Modelling urban growth patterns. Nature 377, 608–612 (1995)CrossRefGoogle Scholar
  16. 16.
    Bettencourt, L.M.A., Lobo, J., Helbing, D., Kühnert, C., West, G.B.: Growth, innovation, scaling, and the pace of life in cities. Proceedings of the National Academy of Sciences of the United States of America 104, 7301–7306 (2007)CrossRefGoogle Scholar
  17. 17.
    Batty, M.: The size, scale, and shape of cities. Science 319, 769–771 (2008)CrossRefGoogle Scholar
  18. 18.
    Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loth, J.M., Martonosi, M., Rowland, J., Urbanek, S., Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Communications of the ACM 56(1), 74–82 (2013)CrossRefGoogle Scholar
  19. 19.
    Balcan, D., Colliza, V., Bruno, G., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences of the United States of America 106(51), 21484–21489 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, L., Hu, K., Ku, T., Yan, X.: Mining frequent trajectory pattern based on vague space partition. Knowledge-Based Systems 50, 100–111 (2013)CrossRefGoogle Scholar
  21. 21.
    Bayir, M.-A., Demirbas, M., Eagle, N.: Mobility profiler: A framework for discovering mobility profiles of cell phone users. Pervasive and Mobile Computing 6(4), 435–454 (2010)CrossRefGoogle Scholar
  22. 22.
    Lin, M., Hsu, W.-J.: Mining GPS data for mobility patterns: A survey. Pervasive and Mobile Computing (Available online July 8, 2013)Google Scholar
  23. 23.
    Koenker, R.: Quantile Regression. Cambridge University Press (2005)Google Scholar
  24. 24.
    Andersen, R.: Modern Methods for Robust Regression. Sage University Paper Series on Quantitative Applications in the Social Sciences, 07-152 (2008)Google Scholar
  25. 25.
    Howard, R.-A.: The Foundations of Decision Analysis. IEEE Transactions on System Science and Cybernetics SSC–4(3), 211–219 (1968)CrossRefGoogle Scholar
  26. 26.
    Bishop, C.-M.: Neural Networks for Pattern Recognition. Oxford University Press (1995)Google Scholar
  27. 27.
    Sarle, W.S.: Cubic Clustering Criterion. SAS Technical Report, vol. 108 (1983)Google Scholar
  28. 28.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos A. R. Pinheiro
    • 1
    • 2
    Email author
  • Véronique Van Vlasselaer
    • 1
  • Bart Baesens
    • 1
  • Alexandre G. Evsukoff
    • 3
  • Moacyr A. H. B. Silva
    • 2
  • Nelson F. F. Ebecken
    • 3
  1. 1.Research Center for Management InformaticsKU LeuvenLeuvenBelgium
  2. 2.Getúlio Vargas Foundation, School of Applied MathematicsRio de JaneiroBrazil
  3. 3.Department of Civil Engineering, Centro de Tecnologia, Cidade UniversitáriaFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations