Asymptotic Behaviour of Total Generalised Variation

  • Konstantinos Papafitsoros
  • Tuomo Valkonen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


The recently introduced second order total generalised variation functional \(\mathrm{TGV}^{2}_{\beta ,\alpha }\) has been a successful regulariser for image processing purposes. Its definition involves two positive parameters \(\alpha \) and \(\beta \) whose values determine the amount and the quality of the regularisation. In this paper we report on the behaviour of \(\mathrm{TGV}^{2}_{\beta ,\alpha }\) in the cases where the parameters \(\alpha , \beta \) as well as their ratio \(\beta /\alpha \) becomes very large or very small. Among others, we prove that for sufficiently symmetric two dimensional data and large ratio \(\beta /\alpha \), \(\mathrm{TGV}^{2}_{\beta ,\alpha }\) regularisation coincides with total variation (\(\mathrm{TV}\)) regularisation.


Total variation Total generalised variation Regularisation parameters Asymptotic behaviour of regularisers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford University Press, USA (2000)zbMATHGoogle Scholar
  2. 2.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM Journal on Imaging Sciences 3(3), 492–526 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bredies, K., Kunisch, K., Valkonen, T.: Properties of L\(^1\)-TGV\(^{\,2}\) : The one-dimensional case. Journal of Mathematical Analysis and Applications 398(1), 438–454 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: Proceedings of SampTA 2011–9th International Conference on Sampling Theory and Applications, Singapore (2011)Google Scholar
  5. 5.
    Chambolle, A., Lions, P.: Image recovery via total variation minimization and related problems. Numerische Mathematik 76, 167–188Google Scholar
  6. 6.
    Chan, T., Esedoglu, S.: Aspects of total variation regularized \({L}^1\) function approximation. SIAM Journal on Applied Mathematics, pp. 1817–1837 (2005)Google Scholar
  7. 7.
    Duval, V., Aujol, J., Gousseau, Y.: The TV\({L1}\) model: a geometric point of view. SIAM Journal on Multiscale Modeling and Simulation 8(1), 154–189Google Scholar
  8. 8.
    Evans, L.: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, Second Edition. American Mathematical Society (2010)Google Scholar
  9. 9.
    Papafitsoros, K., Bredies, K.: A study of the one dimensional total generalised variation regularisation problem. Inverse Problems and Imaging 9(2) (2015)Google Scholar
  10. 10.
    Pöschl, C., Scherzer, O.: Exact solutions of one-dimensional total generalized variation. Communications in Mathematical Sciences 13(1), 171–202 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1–4), 259–268Google Scholar
  12. 12.
    Temam, R., Strang, G.: Functions of bounded deformation. Archive for Rational Mechanics and Analysis 75(1), 7–21 (1980)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Valkonen, T.: The jump set under geometric regularisation. Part 2: Higher-order approaches. arXiv preprint 1407.2334Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations