Infinite Dimensional Optimization Models and PDEs for Dejittering

  • Guozhi Dong
  • Aniello Raffaele Patrone
  • Otmar Scherzer
  • Ozan Öktem
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


In this paper we do a systematic investigation of continuous methods for pixel, line pixel and line dejittering. The basis for these investigations are the discrete line dejittering algorithm of Nikolova and the partial differential equation of Lenzen et al for pixel dejittering. To put these two different worlds in perspective we find infinite dimensional optimization algorithms linking to the finite dimensional optimization problems and formal flows associated with the infinite dimensional optimization problems. Two different kinds of optimization problems will be considered: Dejittering algorithms for determining the displacement and displacement error correction formulations, which correct the jittered image, without estimating the jitter. As a by-product we find novel variational methods for displacement error regularization and unify them into one family. The second novelty is a comprehensive comparison of the different models for different types of jitter, in terms of efficiency of reconstruction and numerical complexity.


Dejittering Variational methods Nonlinear evolution PDEs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. Mathematics and its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Figueiredo, M.A.T., Dias, J.B., Oliveira, J.P., et al.: On total variation denoising: A new majorization-minimization algorithm and an experimental comparisonwith wavalet denoising. In: IEEE International Conference on Image Processing, pp. 2633–2636. IEEE (2006)Google Scholar
  3. 3.
    Grasmair, M., Lenzen, F., Obereder, A., Scherzer, O., Fuchs, M.: A non-convex PDE scale space. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 303–315. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  4. 4.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman, Boston (1984)zbMATHGoogle Scholar
  5. 5.
    Groetsch, C.W.: Inverse Problems. Mathematical Association of America, Washington, DC (1999). Activities for undergraduates zbMATHGoogle Scholar
  6. 6.
    Kang, S.H., Shen, J.: Video dejittering by bake and shake. Image Vision Comput. 24(2), 143–152 (2006)CrossRefGoogle Scholar
  7. 7.
    Kang, S.H., Shen, J.: Image dejittering based on slicing moments. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations. Mathematics and Visualization. Springer, New York (2007) Google Scholar
  8. 8.
    Lenzen, F., Scherzer, O.: A geometric pde for interpolation of \(m\)-channel data. In: Tai, X.C., Knut, M., Marius, L., Knut-Andreas, L. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 413–425. Springer-Verlag, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lenzen, F., Scherzer, O.: Partial differential equations for zooming, deinterlacing and dejittering. Int. J. Comput. Vision 92(2), 162–176 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Morozov, V.A.: Methods for Solving Incorrectly Posed Problems. Springer Verlag, New York (1984)CrossRefGoogle Scholar
  11. 11.
    Morozov, V.A.: Regularization Methods for Ill-Posed Problems. CRC Press, Boca Raton (1993)zbMATHGoogle Scholar
  12. 12.
    Ndajah, P., Kikuchi, H., Yukawa, M., Watanabe, H., et al.: An investigation on the quality of denoised images. Int. J. Circ. Syst. Sign. Proc. 5, 423–434 (2011)Google Scholar
  13. 13.
    Nikolova, M.: Fast dejittering for digital video frames. In: Tai, X.C., Knut, M., Marius, L., Knut-Andreas, L. (eds.) SSVM 2009. LNCS, pp. 439–451. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Nikolova, M.: One-iteration dejittering of digital video images. J. Vis. Commun. Image Represent. 20, 254–274 (2009)CrossRefGoogle Scholar
  15. 15.
    Scherzer, O.: Explicit versus implicit relative error regularization on the space of functions of bounded variation. In: Nashed, M.Z., Scherzer, O. (eds.) Inverse Problems, Image Analysis, and Medical Imaging. Contemporary Mathematics, vol. 313, pp. 171–198. AMC, Providence (2002)CrossRefGoogle Scholar
  16. 16.
    Scherzer, O.: Scale space methods for denoising and inverse problem. Adv. Imaging Electron Phys. 128, 445–530 (2003)CrossRefGoogle Scholar
  17. 17.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)zbMATHGoogle Scholar
  18. 18.
    Shen, J.: Bayesian video dejittering by bv image model. SIAM J. Appl. Math. 64(5), 1691–1708 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. John Wiley & Sons, Washington, D.C. (1977)zbMATHGoogle Scholar
  20. 20.
    Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guozhi Dong
    • 1
  • Aniello Raffaele Patrone
    • 1
  • Otmar Scherzer
    • 1
    • 2
  • Ozan Öktem
    • 3
  1. 1.Computational Science CenterUniversity of ViennaWienAustria
  2. 2.Johann Radon Institute for Computational and Applied Mathematics (RICAM)Austrian Academy of SciencesLinzAustria
  3. 3.Department of MathematicsKTH - Royal Institute of TechnologyStockholmSweden

Personalised recommendations