Advertisement

Edge-Preserving Integration of a Normal Field: Weighted Least-Squares, TV and \(L^1\) Approaches

  • Yvain Quéau
  • Jean-Denis Durou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

We introduce several new functionals, inspired from variational image denoising models, for recovering a piecewise-smooth surface from a dense estimation of its normal field. In the weighted least-squares approach, the non-differentiable elements of the surface are a priori detected so as to weight the least-squares model. To avoid this detection step, we introduce reweighted least-squares for minimising an isotropic TV-like functional, and split-Bregman iterations for \(L^1\) minimisation.

Keywords

Integration Shape-from-gradient Photometric stereo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, A., Raskar, R., Chellappa, R.: What Is the Range of Surface Reconstructions from a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Badri, H., Yahia, H., Aboutajdine, D.: Robust surface reconstruction via triple sparsity. In: CVPR (2014)Google Scholar
  3. 3.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIIMS 3(3), 492–526 (2010)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Du, Z., Robles-Kelly, A., Lu, F.: Robust surface reconstruction from gradient field using the L1 norm. In: DICTA (2007)Google Scholar
  5. 5.
    Durou, J.-D., Aujol, J.-F., Courteille, F.: Integrating the Normal Field of a Surface in the Presence of Discontinuities. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 261–273. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Durou, J.D., Courteille, F.: Integration of a Normal Field without Boundary Condition. In: PACV (ICCV Workshops) (2007)Google Scholar
  7. 7.
    Frankot, R.T., Chellappa, R.: A Method for enforcing integrability in shape from shading algorithms. PAMI 10(4), 439–451 (1988)CrossRefMATHGoogle Scholar
  8. 8.
    Galliani, S., Breuß, M., Ju, Y.C.: Fast and robust surface normal integration by a discrete eikonal equation. In: BMVC (2012)Google Scholar
  9. 9.
    Goldstein, T., Osher, S.: The Split Bregman method for L1-regularized problems. SIIMS 2(2), 323–343 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Harker, M., O’Leary, P.: Least squares surface reconstruction from measured gradient fields. In: CVPR (2008)Google Scholar
  11. 11.
    Harker, M., O’Leary, P.: Regularized reconstruction of a surface from its measured gradient field. JMIV 51(1), 46–70 (2015)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kimmel, R., Yavneh, I.: An algebraic multigrid approach for image analysis. SISC 24(4), 1218–1231 (2003)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH (2003)Google Scholar
  14. 14.
    Reddy, D., Agrawal, A., Chellappa, R.: Enforcing integrability by error correction using L1-minimization. In: CVPR (2009)Google Scholar
  15. 15.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefMATHGoogle Scholar
  16. 16.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. PAMI 12(5), 435–446 (1990)CrossRefGoogle Scholar
  17. 17.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IRIT, UMR CNRS 5505Université de ToulouseToulouseFrance

Personalised recommendations