Edge-Preserving Integration of a Normal Field: Weighted Least-Squares, TV and \(L^1\) Approaches

  • Yvain Quéau
  • Jean-Denis Durou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


We introduce several new functionals, inspired from variational image denoising models, for recovering a piecewise-smooth surface from a dense estimation of its normal field. In the weighted least-squares approach, the non-differentiable elements of the surface are a priori detected so as to weight the least-squares model. To avoid this detection step, we introduce reweighted least-squares for minimising an isotropic TV-like functional, and split-Bregman iterations for \(L^1\) minimisation.


Integration Shape-from-gradient Photometric stereo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, A., Raskar, R., Chellappa, R.: What Is the Range of Surface Reconstructions from a Gradient Field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 578–591. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Badri, H., Yahia, H., Aboutajdine, D.: Robust surface reconstruction via triple sparsity. In: CVPR (2014)Google Scholar
  3. 3.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIIMS 3(3), 492–526 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Du, Z., Robles-Kelly, A., Lu, F.: Robust surface reconstruction from gradient field using the L1 norm. In: DICTA (2007)Google Scholar
  5. 5.
    Durou, J.-D., Aujol, J.-F., Courteille, F.: Integrating the Normal Field of a Surface in the Presence of Discontinuities. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 261–273. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Durou, J.D., Courteille, F.: Integration of a Normal Field without Boundary Condition. In: PACV (ICCV Workshops) (2007)Google Scholar
  7. 7.
    Frankot, R.T., Chellappa, R.: A Method for enforcing integrability in shape from shading algorithms. PAMI 10(4), 439–451 (1988)CrossRefzbMATHGoogle Scholar
  8. 8.
    Galliani, S., Breuß, M., Ju, Y.C.: Fast and robust surface normal integration by a discrete eikonal equation. In: BMVC (2012)Google Scholar
  9. 9.
    Goldstein, T., Osher, S.: The Split Bregman method for L1-regularized problems. SIIMS 2(2), 323–343 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Harker, M., O’Leary, P.: Least squares surface reconstruction from measured gradient fields. In: CVPR (2008)Google Scholar
  11. 11.
    Harker, M., O’Leary, P.: Regularized reconstruction of a surface from its measured gradient field. JMIV 51(1), 46–70 (2015)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kimmel, R., Yavneh, I.: An algebraic multigrid approach for image analysis. SISC 24(4), 1218–1231 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH (2003)Google Scholar
  14. 14.
    Reddy, D., Agrawal, A., Chellappa, R.: Enforcing integrability by error correction using L1-minimization. In: CVPR (2009)Google Scholar
  15. 15.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  16. 16.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. PAMI 12(5), 435–446 (1990)CrossRefGoogle Scholar
  17. 17.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.IRIT, UMR CNRS 5505Université de ToulouseToulouseFrance

Personalised recommendations