A \(L^1\)-TV Algorithm for Robust Perspective Photometric Stereo with Spatially-Varying Lightings

  • Yvain Quéau
  • François Lauze
  • Jean-Denis Durou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


We tackle the problem of perspective 3D-reconstruction of Lambertian surfaces through photometric stereo, in the presence of outliers to Lambert’s law, depth discontinuities, and unknown spatially-varying lightings. To this purpose, we introduce a robust \(L^1\)-TV variational formulation of the recovery problem where the shape itself is the main unknown, which naturally enforces integrability and permits to avoid integrating the normal field.


Uncalibrated photometric stereo Spatially-varying lightings Perspective projection Total variation Proximal methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity by entropy minimization. In: CVPR (2007)Google Scholar
  2. 2.
    Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. IJCV 72(3), 239–257 (2007)CrossRefGoogle Scholar
  3. 3.
    Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. IPI 2(4), 455–484 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20(1–2), 89–97 (2004)MathSciNetGoogle Scholar
  5. 5.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Durou, J.-D., Aujol, J.-F., Courteille, F.: Integrating the normal field of a surface in the presence of discontinuities. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 261–273. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Georghiades, A.: Incorporating the torrance and sparrow model of reflectance in uncalibrated photometric stereo. In: ICCV (2003)Google Scholar
  8. 8.
    Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIIMS 5(2), 537–563 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Goldstein, T., Osher, S.: The Split Bregman method for L1-regularized problems. SIIMS 2(2), 323–343 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using sparse regression. In: CVPR (2012)Google Scholar
  11. 11.
    Mecca, R., Tankus, A., Wetzler, A., Bruckstein, A.M.: A direct differential approach to photometric stereo with perspective wiewing. SIIMS 7(2), 579–612 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Mumford, D.: Bayesian rationale for the variational formulation. In: Geometry-Driven Diffusion in Computer Vision, pp. 135–146 (1994)Google Scholar
  13. 13.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. MMS 4(2), 460–489 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Papadhimitri, T., Favaro, P.: A new perspective on uncalibrated photometric stereo. In: CVPR (2013)Google Scholar
  15. 15.
    Quéau, Y., Lauze, F., Durou, J.D.: Solving uncalibrated photometric stereo using total variation. To appear in JMIV (2015)Google Scholar
  16. 16.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. PAMI 12(5), 435–446 (1990)CrossRefGoogle Scholar
  17. 17.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yvain Quéau
    • 1
  • François Lauze
    • 2
  • Jean-Denis Durou
    • 1
  1. 1.IRITToulouseFrance
  2. 2.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations