Advertisement

A \(L^1\)-TV Algorithm for Robust Perspective Photometric Stereo with Spatially-Varying Lightings

  • Yvain Quéau
  • François Lauze
  • Jean-Denis Durou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

We tackle the problem of perspective 3D-reconstruction of Lambertian surfaces through photometric stereo, in the presence of outliers to Lambert’s law, depth discontinuities, and unknown spatially-varying lightings. To this purpose, we introduce a robust \(L^1\)-TV variational formulation of the recovery problem where the shape itself is the main unknown, which naturally enforces integrability and permits to avoid integrating the normal field.

Keywords

Uncalibrated photometric stereo Spatially-varying lightings Perspective projection Total variation Proximal methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alldrin, N.G., Mallick, S.P., Kriegman, D.J.: Resolving the generalized bas-relief ambiguity by entropy minimization. In: CVPR (2007)Google Scholar
  2. 2.
    Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown lighting. IJCV 72(3), 239–257 (2007)CrossRefGoogle Scholar
  3. 3.
    Bresson, X., Chan, T.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. IPI 2(4), 455–484 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20(1–2), 89–97 (2004)MathSciNetGoogle Scholar
  5. 5.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV 40(1), 120–145 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Durou, J.-D., Aujol, J.-F., Courteille, F.: Integrating the normal field of a surface in the presence of discontinuities. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 261–273. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Georghiades, A.: Incorporating the torrance and sparrow model of reflectance in uncalibrated photometric stereo. In: ICCV (2003)Google Scholar
  8. 8.
    Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIIMS 5(2), 537–563 (2012)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Goldstein, T., Osher, S.: The Split Bregman method for L1-regularized problems. SIIMS 2(2), 323–343 (2009)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Ikehata, S., Wipf, D., Matsushita, Y., Aizawa, K.: Robust photometric stereo using sparse regression. In: CVPR (2012)Google Scholar
  11. 11.
    Mecca, R., Tankus, A., Wetzler, A., Bruckstein, A.M.: A direct differential approach to photometric stereo with perspective wiewing. SIIMS 7(2), 579–612 (2014)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Mumford, D.: Bayesian rationale for the variational formulation. In: Geometry-Driven Diffusion in Computer Vision, pp. 135–146 (1994)Google Scholar
  13. 13.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. MMS 4(2), 460–489 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Papadhimitri, T., Favaro, P.: A new perspective on uncalibrated photometric stereo. In: CVPR (2013)Google Scholar
  15. 15.
    Quéau, Y., Lauze, F., Durou, J.D.: Solving uncalibrated photometric stereo using total variation. To appear in JMIV (2015)Google Scholar
  16. 16.
    Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving Poisson equations in computer vision problems. PAMI 12(5), 435–446 (1990)CrossRefGoogle Scholar
  17. 17.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yvain Quéau
    • 1
  • François Lauze
    • 2
  • Jean-Denis Durou
    • 1
  1. 1.IRITToulouseFrance
  2. 2.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations