Duality Principle for Image Regularization and Perceptual Color Correction Models

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

In this paper, we show that the anisotropic nonlocal total variation involved in the image regularization model of Gilboa and Osher [15] as well as in the perceptual color correction model of Bertalmío et al. [4] possesses a dual formulation. We then obtain novel formulations of their solutions, which provide new insights on these models. In particular, we show that the model of Bertalmío et al. can be split into two steps: first, it performs global color constancy, then local contrast enhancement. We also extend these two channel-wise variational models in a vectorial way by extending the anisotropic nonlocal total variation to vector-valued functions.

Keywords

Nonlocal variational problem Duality principle Contrast enhancement Regularization Perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006)CrossRefGoogle Scholar
  2. 2.
    Batard, T., Bertalmío, M.: On covariant derivatives and their applications to image regularization. SIAM J. Imaging Sci. 7(4), 2393–2422 (2014)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bertalmío, M.: Image Processing for Cinema. Chapman & Hall/CRC (2014)Google Scholar
  4. 4.
    Bertalmío, M., Casselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Im. Processing 16(4), 1058–1072 (2007)CrossRefGoogle Scholar
  5. 5.
    Bertalmío, M., Caselles, V., Provenzi, E.: Issues about Retinex theory and contrast enhancement. Int. J. Computer Vision 83, 101–119 (2009)CrossRefGoogle Scholar
  6. 6.
    Bertalmío, M., Cowan, J.D.: Implementing the Retinex algorithm with Wilson-Cowan equations. J. Physiology 103, 69–72 (2009)Google Scholar
  7. 7.
    Bredies, K., Kunish, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Imaging 2(4), 455–484 (2008)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. Proceedings of CVPR 2, 60–65 (2005)Google Scholar
  10. 10.
    Buchsbaum, G.: A spatial processor model for object color perception. J. Franklin Inst. 310(1), 1–26 (1980)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20, 89–97 (2004)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theoretical Foundations and Numerical Methods for Sparse Recovery 9, 263–340 (2010)MathSciNetGoogle Scholar
  13. 13.
  14. 14.
    Ferradans, S., Bertalmío, M., Provenzi, E., Caselles, V.: An analysis of visual adaptation and contrast perception for tone mapping. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 2002–2012 (2011)CrossRefGoogle Scholar
  15. 15.
    Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2008)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural vectorial total variation which arises from geometric measure theory. SIAM J. Imaging Sci. 5, 537–563 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Jin, Y., Jost, J., Wang, G.: A new nonlocal \(H^1\) model for image denoising. J. Math. Imaging Vision 48(1), 93–105 (2014)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 1091–1115 (2005)Google Scholar
  19. 19.
    Meyer, Y.: Oscillating Patterns in Image Processing and in some Nonlinear Evolution Equations. The Fifteenth Dean Jacqueline B, Lewis Memorial Lectures (2001)Google Scholar
  20. 20.
    Palma-Amestoy, R., Provenzi, E., Bertalmío, M., Caselles, V.: A perceptually inspired variational framework for color enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 31(3), 458–474 (2009)CrossRefGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press (1970)Google Scholar
  22. 22.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefMATHGoogle Scholar
  23. 23.
    Sapiro, G., Caselles, V.: Histogram modification via differential equations. J. Differential Equations 135, 238–268 (1997)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Toland, J.F.: A duality principle for non-convex optimisation and the calculus of variations. Archiv. Rational Mech. Analysis 71(1), 41–61 (1979)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Zamir, S.W., Vazquez-Corral, J., Bertalmío, M.: Gamut mapping in cinematography through perceptually-based contrast modification. J. Sel. Topics Signal Processing 8(3), 490–503 (2014)CrossRefGoogle Scholar
  26. 26.
    Zosso, D., Tran, G., Osher, S.: Non-local Retinex- A unifying framework and beyond. SIAM J. Imaging Sci. (to appear)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations