Luminance-Hue Specification in the RGB Space

  • Fabien Pierre
  • Jean-François Aujol
  • Aurélie Bugeau
  • Vinh-Thong Ta
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

This paper is concerned with a problem arising when editing color images, namely the Luminance-Hue Specification. This problem often occurs when converting an edited image in a given color-space to RGB. Indeed, the colors often get out of the standard range of the RGB space which is commonly used by most of display hardwares. Simple truncations lead to inconsistency in the hue and luminance of the edited image. We formalize and describe this problem from a geometrical point of view. A fast algorithm to solve the considered problem is given. We next focus on its application to image colorization in the RGB color space while most of the methods use other ones. Using directly the three RGB channels, our model avoids artifact effects which appear with other color spaces. Finally a variational model that regularizes color images while dealing with Luminance Hue Specification problem is proposed.

Keywords

Color Luminance hue specification Color-spaces  Colorization Total variation Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics 28(3), 24 (2009)CrossRefGoogle Scholar
  2. 2.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Mathematical Analysis 2(1), 183–202 (2009)MATHMathSciNetGoogle Scholar
  3. 3.
    Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4), 455–484 (2008)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bugeau, A., Ta, V.T., Papadakis, N.: Variational exemplar-based image colorization. IEEE Transactions on Image Processing 23(1), 298–307 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chien, C.L., Tseng, D.C.: Color image enhancement with exact hsi color model. international journal of innovative computing, information and control 7(12), 6691–6710 (2011)Google Scholar
  7. 7.
    Fitschen, J.H., Nikolova, M., Pierre, F., Steidl, G.: A variational model for color assignment. In: SSVM, pp. 1–12 (to appear 2015)Google Scholar
  8. 8.
    Gonzales, R.C., Woods, R.E.: Digital image processing. Addison-Wesley Publishing Company (1993)Google Scholar
  9. 9.
    Horiuchi, T.: Colorization algorithm using probabilistic relaxation. Image and Vision Computing 22(3), 197–202 (2004)CrossRefGoogle Scholar
  10. 10.
    Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Eurographics Conference on Rendering Techniques, pp. 201–210. Eurographics Association (2005)Google Scholar
  11. 11.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Transactions on Graphics 23(3), 689–694 (2004)CrossRefGoogle Scholar
  12. 12.
    Nikolova, M., Steidl, G.: Fast hue and range preserving histogram specification: Theory and new algorithms for color image enhancement. IEEE Transactions on Image Processing 23(9), 4087–4100 (2014)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Exemplar-based colorization in RGB color space. IEEE International Conference on Image Processing (2014)Google Scholar
  14. 14.
    Pierre, F., Aujol, J.F., Bugeau, A., Papadakis, N., Ta, V.T.: Luminance-chrominance model for image colorization. SIAM Journal on Imaging Sciences (to appear). https://hal.archives-ouvertes.fr/hal-01051308
  15. 15.
    Quang, M.H., Kang, S.H., Le, T.M.: Image and video colorization using vector-valued reproducing kernel hilbert spaces. Journal of Mathematical Imaging and Vision 37(1), 49–65 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefMATHGoogle Scholar
  17. 17.
    Takahama, T., Horiuchi, T., Kotera, H.: Improvement on colorization accuracy by partitioning algorithm in cielab color space. In: Aizawa, K., Nakamura, Y., Satoh, S. (eds.) PCM 2004. LNCS, vol. 3332, pp. 794–801. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  18. 18.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. ACM Transactions on Graphics 21(3), 277–280 (2002)CrossRefGoogle Scholar
  19. 19.
    Williams, A., Barrus, S., Morley, R.K., Shirley, P.: An efficient and robust ray-box intersection algorithm. In: ACM SIGGRAPH 2005 Courses, p. 9 (2005)Google Scholar
  20. 20.
    Yoshinari, K., Hoshi, Y., Taguchi, A.: Color image enhancement in hsi color space without gamut problem. In: 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), pp. 578–581. IEEE (2014)Google Scholar
  21. 21.
    Yoshinari, K., Murahira, K., Hoshi, Y., Taguchi, A.: Color image enhancement in improved hsi color space. In: International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2013, pp. 429–434. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fabien Pierre
    • 1
    • 2
  • Jean-François Aujol
    • 1
  • Aurélie Bugeau
    • 2
  • Vinh-Thong Ta
    • 3
  1. 1.University of Bordeaux, IMB, CNRS, UMR 5251TalenceFrance
  2. 2.University of Bordeaux, LaBRI, CNRS, UMR 5800, PICTURATalenceFrance
  3. 3.Bordeaux INP, LaBRI, CNRS, UMR 5800, PICTURATalenceFrance

Personalised recommendations