Second Order Minimum Energy Filtering on \({\text {SE}}_{3}\) with Nonlinear Measurement Equations

  • Johannes Berger
  • Andreas Neufeld
  • Florian Becker
  • Frank Lenzen
  • Christoph Schnörr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

Accurate camera motion estimation is a fundamental building block for many Computer Vision algorithms. For improved robustness, temporal consistency of translational and rotational camera velocity is often assumed by propagating motion information forward using stochastic filters. Classical stochastic filters, however, use linear approximations for the non-linear observer model and for the non-linear structure of the underlying Lie Group \({\text {SE}}_{3}\) and have to approximate the unknown posteriori distribution. In this paper we employ a non-linear measurement model for the camera motion estimation problem that incorporates multiple observation equations. We solve the underlying filtering problem using a novel Minimum Energy Filter on \({\text {SE}}_{3}\) and give explicit expressions for the optimal state variables. Experiments on the challenging KITTI benchmark show that, although a simple motion model is only employed, our approach improves rotational velocity estimation and otherwise is on par with the state-of-the-art.

Keywords

Minimum energy filter Lie groups Optimal control Visual odometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press (2008)Google Scholar
  2. 2.
    Athans, M., Falb, P.: Optimal Control. An Introduction to the Theory and Its Applications. McGraw-Hill (1966)Google Scholar
  3. 3.
    Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer (2009)Google Scholar
  4. 4.
    Becker, F., Lenzen, F., Kappes, J.H., Schnörr, C.: Variational Recursive Joint Estimation of Dense Scene Structure and Camera Motion from Monocular High Speed Traffic Sequences. IJCV 105, 269–297 (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Brigo, D., Hanzon, B., Le Gland, F.: Approximate Nonlinear Filtering by Projection on Exponential Manifolds of Densities. Bernoulli 5(3), 495–534 (1999)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Daum, F.: Nonlinear Filters: Beyond the Kalman Filter. IEEE A&E Systems Magazin 20(8, Part 2), 57–69 (2005)CrossRefGoogle Scholar
  7. 7.
    Daum, F., Huang, J.: Curse of dimensionality and particle filters. In: Aerospace Conference (2003)Google Scholar
  8. 8.
    Geiger, A., Ziegler, J., Stiller, C.: Stereoscan: Dense 3D Reconstruction in Real-Time. In: Intelligent Vehicles Symposium (IV). IEEE (2011)Google Scholar
  9. 9.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer (2006)Google Scholar
  10. 10.
    Jurdjevic, V.: Geometric control theory. Cambridge University Press (1997)Google Scholar
  11. 11.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Journal of Fluids Engineering 82(1), 35–45 (1960)Google Scholar
  12. 12.
    Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: IV (2010)Google Scholar
  13. 13.
    Krener, A.J.: The convergence of the minimum energy estimator. In: Kang, W., Borges, C., Xiao, M. (eds.) New Trends in Nonlinear Dynamics and Control and their Applications. LNCIS, vol. 295, pp. 187–208. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Kwon, J., Choi, M., Park, F.C., Chun, C.: Particle Filtering on the Euclidean Group: Framework and Applications. Robotica 25(6), 725–737 (2007)CrossRefGoogle Scholar
  15. 15.
    Markley, F.L.: Attitude Error Representations for Kalman Filtering. Journal of guidance, control, and dynamics 26(2), 311–317 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Mortensen, R.E.: Maximum-Likelihood Recursive Nonlinear Filtering. J. Opt. Theory Appl. 2(6), 386–394 (1968)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Saccon, A., Trumpf, J., Mahony, R., Aguiar, A.P.: Second-order-optimal filters on lie groups. In: CDC (2013)Google Scholar
  18. 18.
    Sun, D., Roth, S., Black, M.J.: A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind them. IJCV 106(2), 115–137 (2014)CrossRefGoogle Scholar
  19. 19.
    Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 756–771. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  20. 20.
    Zamani, M., Trumpf, J., Mahoney, M.: A second order minimum-energy filter on the special orthogonal group. In: Proc. ACC (2012)Google Scholar
  21. 21.
    Žefran, M., Kumar, V., Croke, C.: Metrics and Connections for Rigid-Body Kinematics. The International Journal of Robotics Research 18(2), 242–1 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Berger
    • 1
  • Andreas Neufeld
    • 1
  • Florian Becker
    • 1
  • Frank Lenzen
    • 1
  • Christoph Schnörr
    • 1
  1. 1.IPA & HCIUniversity of HeidelbergHeidelbergGermany

Personalised recommendations