Computation and Visualization of Local Deformation for Multiphase Metallic Materials by Infimal Convolution of TV-Type Functionals

  • Frank Balle
  • Dietmar Eifler
  • Jan Henrik FitschenEmail author
  • Sebastian Schuff
  • Gabriele Steidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


Estimating the local strain tensor from a sequence of microstructural images, realized during a tensile test of an engineering material, is a challenging problem. In this paper we propose to compute the strain tensor from image sequences acquired during tensile tests with increasing forces in horizontal direction by a variational optical flow model. To separate the global displacement during insitu tensile testing, which can be roughly approximated by a plane, from the local displacement we use an infimal convolution regularization consisting of first and second order terms. We apply a primal-dual method to find a minimizer of the energy function. This approach has the advantage that the strain tensor is directly computed within the algorithm and no additional derivative of the displacement must be computed. The algorithm is equipped with a coarse-to-fine strategy to cope with larger displacements and an adaptive parameter choice. Numerical examples with simulated and experimental data demonstrate the advantageous performance of our algorithm.


Tensile Test Strain Tensor Regularization Term Global Displacement Biaxial Tensile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, L., Castaño, C., Garca, M., Krissian, K., Mazorra, L., Salgado, A., Sinchez, J.: Variational second order flow estimation for PIV sequences. Experiments in Fluids 44(2), 291–304 (2008)CrossRefGoogle Scholar
  2. 2.
    Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2(3), 283–310 (1989)CrossRefGoogle Scholar
  3. 3.
    Becker, F., Petra, S., Schnörr, C.: Optical flow. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, 2nd edition. Springer (2014)Google Scholar
  4. 4.
    Blaber, J., Adair, B., Antoniou, A.: Ncorr: Open-source 2D digital image correlation Matlab software. (2014)
  5. 5.
    Bredies, K., Holler, M.: Regularization of linear inverse problems with total generalized variation. Journal of Inverse and Ill-posed Problems 22(6), 871–913 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM Journal on Imaging Sciences 3(3), 1–42 (2009)MathSciNetGoogle Scholar
  7. 7.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Chambolle, A., Pock, T.: A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Corpetti, T., Memin, E., Perez, P.: Dense estimation of fluid flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3), 365–380 (2002)CrossRefGoogle Scholar
  10. 10.
    Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods for saddle-point problems. ArXiv:1305.0546 (2013) (preprint)
  11. 11.
    Hewer, A., Weickert, J., Seibert, H., Scheffer, T., Diebels, S.: Lagrangian strain tensor computation with higher order variational models. In: Proceedings of the British Machine Vision Conference. BMVA Press (2013)Google Scholar
  12. 12.
    Horn, B.K., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17(1–3), 185–203 (1981)CrossRefGoogle Scholar
  13. 13.
    Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 810–817 (2009)Google Scholar
  14. 14.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  15. 15.
    Scherer, S., Werth, P., Pinz, A.: The discriminatory power of ordinal measures - towards a new coefficient. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition vol. 1, pp. 76–81 (1999)Google Scholar
  16. 16.
    Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. Approximation XII: San Antonio 2007, 360–385 (2008)Google Scholar
  17. 17.
    Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete \(\ell _1\)-type functionals. Communications in Mathematical Sciences 9(3), 797–872 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Tatschl, A., Kolednik, O.: A new tool for the experimental characterization of micro-plasticity. Materials Science and Engineering: A 339(1–2), 265–280 (2003)CrossRefGoogle Scholar
  19. 19.
    Trobin, W., Pock, T., Cremers, D., Bischof, H.: An unbiased second-order prior for high-accuracy motion estimation. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 396–405. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  20. 20.
    Werth, P., Scherer, S.: A novel bidirectional framework for control and refinement of area based correlation techniques. In: Proceedings of the 15th International Conference on Pattern Recognition, 2000, vol. 3, pp. 730–733 (2000)Google Scholar
  21. 21.
    Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. Journal of Mathematical Imaging and Vision 28, 67–80 (2007)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Yuan, J., Schnörr, C., Steidl, G.: Simultaneous higher order optical flow estimation and decomposition. SIAM Journal on Scientific Computing 29(6), 2283–2304 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Frank Balle
    • 1
  • Dietmar Eifler
    • 1
  • Jan Henrik Fitschen
    • 2
    Email author
  • Sebastian Schuff
    • 1
  • Gabriele Steidl
    • 2
  1. 1.Department of Mechanical and Process EngineeringUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations