Advertisement

Bézier Curves in the Space of Images

  • Alexander Effland
  • Martin Rumpf
  • Stefan Simon
  • Kirsten Stahn
  • Benedikt Wirth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)

Abstract

Bézier curves are a widespread tool for the design of curves in Euclidian space. This paper generalizes the notion of Bézier curves to the infinite-dimensional space of images. To this end the space of images is equipped with a Riemannian metric which measures the cost of image transport and intensity variation in the sense of the metamorphosis model [MY01]. Bézier curves are then computed via the Riemannian version of de Casteljau’s algorithm, which is based on a hierarchical scheme of convex combination along geodesic curves. Geodesics are approximated using a variational discretization of the Riemannian path energy. This leads to a generalized de Casteljau method to compute suitable discrete Bézier curves in image space. Selected test cases demonstrate qualitative properties of the approach. Furthermore, a Bézier approach for the modulation of face interpolation and shape animation via image sketches is presented.

Keywords

De Casteljau algorithm Shape manifolds Metamorphosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AK98.
    Arnold, V., Khesin, B.: Topological methods in hydrodynamics. Springer, New York (1998)zbMATHGoogle Scholar
  2. Arn66.
    Arnold, V.: Sur la géométrie différentielle des groupes de lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier 16, 319–361 (1966)CrossRefGoogle Scholar
  3. BB00.
    Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. BER14.
    Time discrete geodesic paths in the space of images (2014) (submitted)Google Scholar
  5. BMTY02.
    Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computational anatomy: Computing metrics on anatomical shapes. In: Proceedings of 2002 IEEE ISBI, pp. 341–344 (2002)Google Scholar
  6. CSC01.
    Camarinha, M., Silva Leite, F., Crouch, P.: On the geometry of Riemannian cubic polynomials. Differential Geom. Appl. 15(2), 107–135 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. DGM98.
    Dupuis, D., Grenander, U., Miller, M.I.: Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics 56, 587–600 (1998)zbMATHMathSciNetGoogle Scholar
  8. FLPJ04.
    Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging 23(8), 995–1005 (2004)CrossRefGoogle Scholar
  9. GSA14.
    Gousenbourger, P.-Y., Samir, C., Absil, P.-A.: Piecewise-Bezier \(C^1\) interpolation on Riemannian manifolds with application to 2D shape morphing. In: Proceedings of ICPR 2014 (2014)Google Scholar
  10. MCV08.
    Morera, D.M., Carvalho, P.C., Velho, L.: Modeling on triangulations with geodesic curves. The Visual Computer 24(12), 1025–1037 (2008)CrossRefGoogle Scholar
  11. MY01.
    Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision 41(1–2), 61–84 (2001)CrossRefzbMATHGoogle Scholar
  12. Nv91.
    Nečas, J., Šilhavý, M.: Multipolar viscous fluids. Quarterly of Applied Mathematics 49(2), 247–265 (1991)zbMATHMathSciNetGoogle Scholar
  13. PR95.
    Park, F.C., Ravani, B.: Bézier curves on Riemannian manifolds and Lie groups with kinematics applications. J. Mech. Des. 117(1), 36–40 (1995)CrossRefGoogle Scholar
  14. PN07a.
    Popiel, T., Noakes, L.: Elastica in SO(3). J. Aust. Math. Soc. 83(1), 105–124 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  15. PN07b.
    Popiel, T., Noakes, L.: Bézier curves and \(C^2\) interpolation in Riemannian manifolds. J. Approx. Theory 148(2), 111–127 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. RW14.
    Rumpf, M., Wirth, B.: Variational time discretization of geodesic calculus. IMA Journal of Numerical Analysis (2014) (to appear)Google Scholar
  17. TY05a.
    Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. MATH. ANAL. 37(2), 17–59 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. TY05b.
    Trouvé, A., Younes, L.: Metamorphoses through Lie group action. Foundations of Computational Mathematics 5(2), 173–198 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. ZYHT07.
    Zhu, L., Yang, Y., Haker, S., Tannenbaum, A.: An image morphing technique based on optimal mass preserving mapping. IEEE Transactions on Image Processing 16(6), 1481–1495 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Effland
    • 1
  • Martin Rumpf
    • 1
  • Stefan Simon
    • 1
  • Kirsten Stahn
    • 1
  • Benedikt Wirth
    • 2
  1. 1.Institute for Numerical SimulationUniversität BonnBonnGermany
  2. 2.Institute for Computational and Applied MathematicsUniversity of MuensterMuensterGermany

Personalised recommendations