An image registration framework for sliding motion with piecewise smooth deformations

  • Stefan HeldmannEmail author
  • Thomas Polzin
  • Alexander Derksen
  • Benjamin Berkels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


We present a novel variational framework for image registration with explicit modeling of sliding motion, as it occurs, e.g., in the medical context at organ boundaries. The key of our method is a piecewise smooth deformation model that allows for discontinuities at the sliding interfaces while keeping the sliding domain in contact with its surrounding. The presented approach is generic and can be used with a large class of both image similarity measures and regularizers for the deformations. A useful byproduct of the proposed method is an automatic propagation of a given segmentation from one image to the other. We proof existence of minimizers under rather mild assumptions and present an efficient scheme for computing a numerical solution. The minimization is based on a splitting approach with alternating derivative based Gauss-Newton and fast first order convex optimization. Finally, we evaluate the proposed method on synthetic and real data.


Image registration Sliding motion Deformation modeling Convex optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zitová, B., Flusser, J.: Image registration methods: a survey. Image and Vision Computing 21, 977–1000 (2003)CrossRefGoogle Scholar
  2. 2.
    Delmon, V., Rit, S., Pinho, R., Sarrut, D.: Direction dependent B-splines decomposition for the registration of sliding objects. In: Proceedings of the Fourth International Workshop on Pulmonary Image Analysis, pp. 45–55 (2011)Google Scholar
  3. 3.
    Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Medical Image Analysis 16, 150–159 (2012)CrossRefGoogle Scholar
  4. 4.
    Pace, D., Aylward, S., Niethammer, M.: A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Transactions on Medical Imaging 32, 2114–2126 (2013)CrossRefGoogle Scholar
  5. 5.
    Baluwala, H.Y., Risser, L., Schnabel, J.A., Saddi, K.A.: Toward physiologically motivated registration of diagnostic CT and PET/CT of lung volumes. Medical Physics 40(2), 021 903-1–021 903-13 (2013)CrossRefGoogle Scholar
  6. 6.
    Han, L., Hawkes, D., Barratt, D.: A hybrid biomechanical model-based image registration method for sliding objects. In: SPIE Medical Imaging, pp. 90 340G-1-6 (2014)Google Scholar
  7. 7.
    Derksen, A., Heldmann, S., Polzin, T., Berkels, B.: Image registration with sliding motion constraints for 4D CT motion correction. In: Bildverarbeitung für die Medizin 2015 (2015)Google Scholar
  8. 8.
    Vemuri, B., Chen, Y.: Joint image registration and segmentation. In: Vemuri, B., Chen, Y. (eds.) Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 251–269. Springer, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for integrating segmentation and registration through active contours. Medical Image Analysis 7(2), 171–185 (2003)CrossRefGoogle Scholar
  10. 10.
    Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. International Journal of Computer Vision 68(2), 111–124 (2006)CrossRefGoogle Scholar
  11. 11.
    Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM (2009)Google Scholar
  12. 12.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems, ser. The Clarendon Press, Oxford Mathematical Monographs, New York (2000)Google Scholar
  13. 13.
    Evans, L.C.: Partial Differential Equations. American Math. Soc. (1998)Google Scholar
  14. 14.
    Nikolova, M., Esedoḡlu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics 66(5), 1632–1648 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Berkels, B.: An unconstrained multiphase thresholding approach for image segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 26–37. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006) zbMATHGoogle Scholar
  17. 17.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Castillo, R., Castillo, E., Guerra, R., Johnson, V.E., McPhail, T., Garg, A.K., Guerrero, T.: A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Physics in Medicine and Biology 54, 1849–1870 (2009)CrossRefGoogle Scholar
  19. 19.
    Fischer, B., Modersitzki, J.: Curvature based image registration. Journal of Mathematical Imaging and Vision 18(1), 81–85 (2003)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Heldmann
    • 1
    Email author
  • Thomas Polzin
    • 2
  • Alexander Derksen
    • 1
  • Benjamin Berkels
    • 3
  1. 1.Fraunhofer MEVIS Project Group Image RegistrationLübeckGermany
  2. 2.Institute of Mathematics and Image ComputingUniversity of LübeckLübeckGermany
  3. 3.Aachen Inst. for Advanced Study in Comp. Eng. ScienceRWTH AachenAachenGermany

Personalised recommendations