Spectral Representations of One-Homogeneous Functionals

  • Martin Burger
  • Lina Eckardt
  • Guy GilboaEmail author
  • Michael Moeller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


This paper discusses a generalization of spectral representations related to convex one-homogeneous regularization functionals, e.g. total variation or \(\ell ^1\)-norms. Those functionals serve as a substitute for a Hilbert space structure (and the related norm) in classical linear spectral transforms, e.g. Fourier and wavelet analysis. We discuss three meaningful definitions of spectral representations by scale space and variational methods and prove that (nonlinear) eigenfunctions of the regularization functionals are indeed atoms in the spectral representation. Moreover, we verify further useful properties related to orthogonality of the decomposition and the Parseval identity.

The spectral transform is motivated by total variation and further developed to higher order variants. Moreover, we show that the approach can recover Fourier analysis as a special case using an appropriate \(\ell ^1\)-type functional and discuss a coupled sparsity example.


Nonlinear spectral decomposition Nonlinear eigenfunctions Total variation Convex regularization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differential and Integral Equations 14(3), 321–360 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Andreu, F., Caselles, V., Dıaz, J., Mazón, J.: Some qualitative properties for the total variation flow. Journal of Functional Analysis 188(2), 516–547 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Aujol, J., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. Int. J. Comp. Vision 67, 111–136 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bartels, S., Nochetto, R., Abner, J., Salgado, A.: Discrete total variation flows without regularization. arXiv preprint arXiv:1212.1137 (2012)
  5. 5.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(R^N\). Journal of Differential Equations 184(2), 475–525 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order tv methods: enhancement via bregman iteration. J. Sci. Comput. 54, 269–310 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Meth. Appl. Analysis 20(4), 295–334 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Burger, M., Frick, K., Osher, S., Scherzer, O.: Inverse total variation flow. Multiscale Modeling & Simulation 6(2), 366–395 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Comm. in Math. Sci. 4(1), 179–212 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chan, T.F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Eckardt, L.: Spektralzerlegung von Bildern mit TV-methoden, bachelor thesis, University of Münster (2014)Google Scholar
  14. 14.
    Giga, Y., Kohn, R.: Scale-invariant extinction time estimates for some singular diffusion equations. Hokkaido University Preprint Series in Mathematics (963) (2010)Google Scholar
  15. 15.
    Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013) Google Scholar
  16. 16.
    Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sciences 7(4), 1937–1961 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 35(1), 171–184 (2013)CrossRefGoogle Scholar
  18. 18.
    Meyer, Y.: Oscillating patterns in image processing and in some nonlinear evolution equations (2001)Google Scholar
  19. 19.
    Müller, J.: Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, Ph.D. Thesis, Univ. Münster (2013)Google Scholar
  20. 20.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems 2, 849–856 (2002)Google Scholar
  21. 21.
    Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H\(^{-1}\) norm. SIAM Multiscale Model. Simul. 1, 349–370 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  24. 24.
    Steidl, G., Weickert, J., Brox, T., Mrzek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Xu, J., Osher, S.: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Processing 16(2), 534–544 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Burger
    • 1
  • Lina Eckardt
    • 1
  • Guy Gilboa
    • 2
    Email author
  • Michael Moeller
    • 3
  1. 1.Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
  2. 2.Electrical Engineering DepartmentTechnion IITHaifaIsrael
  3. 3.Department of MathematicsTechnische Universität MünchenMunichGermany

Personalised recommendations