On Debiasing Restoration Algorithms: Applications to Total-Variation and Nonlocal-Means

  • Charles-Alban DeledalleEmail author
  • Nicolas Papadakis
  • Joseph Salmon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9087)


Bias in image restoration algorithms can hamper further analysis, typically when the intensities have a physical meaning of interest, e.g., in medical imaging. We propose to suppress a part of the bias – the method bias – while leaving unchanged the other unavoidable part – the model bias. Our debiasing technique can be used for any locally affine estimator including \(\ell _1\) regularization, anisotropic total-variation and some nonlocal filters.


Additive White Gaussian Noise Tikhonov Regularization Model Bias Full Column Rank Soft Thresholding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008)Google Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Burger, M., Gilboa, G., Osher, S., Xu, J., et al.: Nonlinear inverse scale space methods. Communications in Mathematical Sciences 4(1), 179–212 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Deledalle, C.-A., Vaiter, S., Peyré, G., Fadili, J.M.: Stein unbiased gradient estimator of the risk (SUGAR) for multiple parameter selection. SIAM J. Imaging Sciences 7(4), 2448–2487 (2014)CrossRefzbMATHGoogle Scholar
  7. 7.
    Denis De Senneville, B., Roujol, S., Hey, S., Moonen, C., Ries, M.: Extended Kalman filtering for continuous volumetric MR-temperature imaging. IEEE Trans. Med. Imaging 32(4), 711–718 (2013)CrossRefGoogle Scholar
  8. 8.
    Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist. 32(2), 407–499 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors. Inverse Problems 23(3), 947 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96(456), 1348–1360 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sciences 7(4), 1937–1961 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Herrity, K.K, Gilbert, A.C., Tropp, J.A.: Sparse approximation via iterative thresholding. In: ICASSP, vol. 3, pp. III-III. IEEE (2006)Google Scholar
  14. 14.
    Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lederer. J.: Trust, but verify: benefits and pitfalls of least-squares refitting in high dimensions (2013). arXiv preprint arXiv:1306.0113
  16. 16.
    Louchet, C., Moisan, L.: Total variation as a local filter. SIAM Journal on Imaging Sciences 4(2), 651–694 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. SIAM J. Multiscale Model. Simul. 4(2), 460–489 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena 60(1), 259–268 (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse problems 19(6), S165 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 267–288 (1996)Google Scholar
  21. 21.
    Tikhonov, A.N.: On the stability of inverse problems. Dokl. Akad. Nauk SSSR 39, 176–179 (1943)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Vaiter, S., Deledalle, C.-A., Peyré, G., Dossal, C., Fadili, J.: Local behavior of sparse analysis regularization: Applications to risk estimation. Appl. Comput. Harmon. Anal. 35(3), 433–451 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Vaiter, S., Golbabaee, M., Fadili, M., Peyré, G.: Model selection with low complexity priors (2014). arXiv preprint arXiv:1307.2342
  24. 24.
    Xu, J., Osher, S.: Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Proc. 16(2), 534–544 (2007)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Charles-Alban Deledalle
    • 1
    • 2
    Email author
  • Nicolas Papadakis
    • 1
    • 2
  • Joseph Salmon
    • 3
  1. 1.IMBUniversity of BordeauxTalenceFrance
  2. 2.CNRS, IMBUniversity of BordeauxTalenceFrance
  3. 3.CNRS LTCIInstitut Mines-Télécom, Télécom ParisTechParisFrance

Personalised recommendations