The Carotid Body Does Not Mediate the Acute Ventilatory Effects of Leptin

  • E. Olea
  • M. J. Ribeiro
  • T. Gallego-Martin
  • S. Yubero
  • R. Rigual
  • J. F. Masa
  • A. Obeso
  • S. V. Conde
  • C. Gonzalez
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Leptin is a hormone produced mostly in adipose tissue and playing a key role in the control of feeding and energy expenditure aiming to maintain a balance between food intake and metabolic activity. In recent years, it has been described that leptin might also contributes to control ventilation as the administration of the hormone reverses the hypoxia and hypercapnia commonly encountered in ob/ob mice which show absence of the functional hormone. In addition, it has been shown that the carotid body (CB) of the rat expresses leptin as well as the functional leptin-B receptor. Therefore, the possibility exists that the ventilatory effects of leptin are mediated by the CB chemoreceptors. In the experiments described below we confirm the stimulatory effect of leptin on ventilation, finding additionally that the CB does not mediate the instant to instant control of ventilation.

Keywords

Leptin Carotid body Ventilation Catecholamine hypoxia 

References

  1. Aguer C, Harper ME (2012) Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab 26:805–819Google Scholar
  2. Bickelmann AG, Burwell CS, Robin ED, Whaley RD (1956) Extreme obesity associated with alveolar hypoventilation; a Pickwickian syndrome. Am J Med 21:811–818PubMedCrossRefGoogle Scholar
  3. Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47–T59PubMedCrossRefPubMedCentralGoogle Scholar
  4. Chaiban JT, Bitar FF, Azar ST (2008) Effect of chronic hypoxia on leptin, insulin, adiponectin, and ghrelin. Metabolism 57:1019–1022PubMedCrossRefGoogle Scholar
  5. Chang Z, Ballou E, Jiao W, McKenna KE, Morrison SF, McCrimmon DR (2013) Systemic leptin produces a long-lasting increase in respiratory motor output in rats. Front Physiol 4:16PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ciriello J, Moreau JM (2012) Leptin signaling in the nucleus of the solitary tract alters the cardiovascular responses to activation of the chemoreceptor reflex. Am J Physiol Regul Integr Comp Physiol 303:R727–R736PubMedCrossRefGoogle Scholar
  7. Ciriello J, Moreau JM (2013) Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat. Neuroscience 229:88–99PubMedCrossRefGoogle Scholar
  8. Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C (2006) Function of the rat carotid body chemoreceptors in ageing. J Neurochem 99:711–723PubMedCrossRefGoogle Scholar
  9. González C, Almaraz L, Obeso A, Rigual R (1992) Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci 15:146–153PubMedCrossRefGoogle Scholar
  10. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMedGoogle Scholar
  11. Gonzalez C, Vaquero LM, López-López JR, Pérez-García MT (2009) Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity. Ann N Y Acad Sci 1177:82–88PubMedCrossRefGoogle Scholar
  12. Gonzalez-Martín MC, Vega-Agapito MV, Conde SV, Castañeda J, Bustamante R, Olea E, Perez-Vizcaino F, Gonzalez C, Obeso A (2011) Carotid body function and ventilatory responses in intermittent hypoxia. Evidence for anomalous brainstem integration of arterial chemoreceptor input. J Cell Physiol 226:1961–1969PubMedCrossRefGoogle Scholar
  13. Harlan SM, Rahmouni K (2013) Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clin Auton Res 23:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  14. Inyushkin AN, Inyushkina EM, Merkulova NA (2009) Respiratory responses to microinjections of leptin into the solitary tract nucleus. Neurosci Behav Physiol 39:231–240PubMedCrossRefGoogle Scholar
  15. Katz M, Finley J, Erickson J, Brosenitsch T (1997) Organization and development of chemoafferent input to the brainstem. In: Gonzalez C (ed) Carotid body chemoreceptors. Springer, NY, pp 159–170Google Scholar
  16. Kemp PJ (2005) Hemeoxygenase-2 as an O2 sensor in K+ channel-dependent chemotransduction. Biochem Biophys Res Commun 338:648–652PubMedCrossRefGoogle Scholar
  17. Kumar P (2009) Systemic effects resulting from carotid body stimulation-invited article. Adv Exp Med Biol 648:223–233PubMedCrossRefGoogle Scholar
  18. Malli F, Papaioannou AI, Gourgoulianis KI, Daniil Z (2010) The role of leptin in the respiratory system: an overview. Respir Res 11:152PubMedCrossRefPubMedCentralGoogle Scholar
  19. Mark AL (2013) Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol 305:R566–R581PubMedCrossRefPubMedCentralGoogle Scholar
  20. Messenger SA, Ciriello J (2012) Effects of intermittent hypoxia on leptin signalling in the carotid body. Neuroscience 232:216–225PubMedCrossRefGoogle Scholar
  21. Messenger SA, Ciriello J (2013) Effects of intermittent hypoxia on leptin signalling in the carotid body. Neuroscience 232:216–225PubMedCrossRefGoogle Scholar
  22. Messenger SA, Moreau JM, Ciriello J (2012) Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Res 1446:56–70PubMedCrossRefGoogle Scholar
  23. Messenger SA, Moreau JM, Ciriello J (2013) Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 1513:51–60PubMedCrossRefGoogle Scholar
  24. Monteiro TC, Batuca JR, Obeso A, González C, Monteiro EC (2011) Carotid body function in aged rats: responses to hypoxia, ischemia, dopamine, and adenosine. Age (Dordr) 33:337–350CrossRefGoogle Scholar
  25. O’Donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR, Smith PL (1999) Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 159:1477–1484PubMedCrossRefGoogle Scholar
  26. Olea E, Agapito MT, Gallego-Martin T, Rocher A, Gomez-Niño A, Obeso A, Gonzalez C, Yubero S (2014) Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure. J Appl Physiol (1985) 117:706–719Google Scholar
  27. Olson AL, Zwillich C (2005) The obesity hypoventilation syndrome. Am J Med 118:948–956PubMedCrossRefGoogle Scholar
  28. Peers C (1997) Oxygen-sensitive ion channels. Trends Pharmacol Sci 18:405–408PubMedCrossRefGoogle Scholar
  29. Porzionato A, Rucinski M, Macchi V, Stecco C, Castagliuolo I, Malendowicz LK, De Caro R (2011) Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res 1385:56–67PubMedCrossRefGoogle Scholar
  30. Simler N, Malgoyre A, Koulmann N, Alonso A, Peinnequin A, Bigard AX (2007) Hypoxic stimulus alters hypothalamic AMP-activated protein kinase phosphorylation concomitant to hypophagia. J Appl Physiol (1985) 102:2135–2141Google Scholar
  31. Vicario I, Rigual R, Obeso A, Gonzalez C (2000) Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am J Physiol Cell Physiol 278:C490–C499PubMedGoogle Scholar
  32. Zeng J, Patterson BW, Klein S, Martin DR, Dagogo-Jack S, Kohrt WM, Miller SB, Landt M (1997) Whole body leptin kinetics and renal metabolism in vivo. Am J Physiol 273:E1102–E1106PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • E. Olea
    • 1
    • 2
  • M. J. Ribeiro
    • 3
  • T. Gallego-Martin
    • 1
    • 2
  • S. Yubero
    • 1
    • 2
  • R. Rigual
    • 1
    • 2
  • J. F. Masa
    • 2
    • 4
  • A. Obeso
    • 1
    • 2
  • S. V. Conde
    • 3
  • C. Gonzalez
    • 1
    • 2
  1. 1.Department of Biochemistry, Molecular Biology and Physiology, Medicine SchoolUniversity of Valladolid and IBGM/CSICValladolidSpain
  2. 2.CIBERES. Instituto de Salud Carlos IIIMadridSpain
  3. 3.Chronic Diseases Research Center (CEDOC), Nova Medical School Faculdade Ciências MédicasUniversity of Nova LisboaLisbonPortugal
  4. 4.Pulmonary DivisionHospital San Pedro de AlcántaraCáceresSpain

Personalised recommendations