Advertisement

Modulation of the LKB1-AMPK Signalling Pathway Underpins Hypoxic Pulmonary Vasoconstriction and Pulmonary Hypertension

  • A. Mark EvansEmail author
  • Sophronia A. Lewis
  • Oluseye A. Ogunbayo
  • Javier Moral-Sanz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 860)

Abstract

Perhaps the defining characteristic of pulmonary arteries is the process of hypoxic pulmonary vasoconstriction (HPV) which, under physiological conditions, supports ventilation-perfusion matching in the lung by diverting blood flow away from oxygen deprived areas of the lung to oxygen rich regions. However, when alveolar hypoxia is more widespread, either at altitude or with disease (e.g., cystic fibrosis), HPV may lead to hypoxic pulmonary hypertension. HPV is driven by the intrinsic response to hypoxia of pulmonary arterial smooth muscle and endothelial cells, which are acutely sensitive to relatively small changes in pO2 and have evolved to monitor oxygen supply and thus address ventilation-perfusion mismatch. There is now a consensus that the inhibition by hypoxia of mitochondrial oxidative phosphorylation represents a key step towards the induction of HPV, but the precise nature of the signalling pathway(s) engaged thereafter remains open to debate. We will consider the role of the AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1), an upstream kinase through which AMPK is intimately coupled to changes in oxygen supply via mitochondrial metabolism. A growing body of evidence, from our laboratory and others, suggests that modulation of the LKB1-AMPK signalling pathway underpins both hypoxic pulmonary vasoconstriction and the development of pulmonary hypertension.

Keywords

LKB1 AMPK Hypoxia Pulmonary artery Vasoconstriction Kv1.5 

Notes

Acknowledgements

The work described was supported by Programme Grants from the Wellcome Trust (81195), and the British Heart Foundation (29885).

References

  1. Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100–1112PubMedCrossRefGoogle Scholar
  2. Bergofsky EH, Haas F, Porcelli R (1968) Determination of the sensitive vascular sites from which hypoxia and hypercapnia elicit rises in pulmonary arterial pressure. Fed Proc 27:1420–1425PubMedGoogle Scholar
  3. Bradford JR, Dean HP (1894) The pulmonary circulation. J Physiol 16:34–158 25Google Scholar
  4. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1–13PubMedCrossRefPubMedCentralGoogle Scholar
  5. Buttigieg J, Zhang M, Thompson R, Nurse C (2006) Potential role of mitochondria in hypoxia sensing by adrenomedullary chromaffin cells. Adv Exp Med Biol 580:79–85, discussion 351–9PubMedCrossRefGoogle Scholar
  6. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539PubMedCrossRefGoogle Scholar
  7. Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem/FEBS 229:558–565CrossRefGoogle Scholar
  8. Dipp M, Evans AM (2001) Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ Res 89:77–83PubMedCrossRefGoogle Scholar
  9. Dipp M, Nye PC, Evans AM (2001) Hypoxic release of calcium from the sarcoplasmic reticulum of pulmonary artery smooth muscle. Am J Physiol Lung Cell Mol Physiol 281:L318–L325PubMedGoogle Scholar
  10. Dipp M, Thomas JM, Galione A, Evans AM (2003) A PO2 window for smooth muscle cADPR accumulation and constriction by hypoxia in rabbit pulmonary artery smooth muscle. Proc Physiol Soc 547P:C72Google Scholar
  11. Duchen MR, Biscoe TJ (1992a) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31PubMedCrossRefPubMedCentralGoogle Scholar
  12. Duchen MR, Biscoe TJ (1992b) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61PubMedCrossRefPubMedCentralGoogle Scholar
  13. Duke HN, Killick EM (1952) Pulmonary vasomotor responses of isolated perfused cat lungs to anoxia. J Physiol 117:303–316PubMedCrossRefPubMedCentralGoogle Scholar
  14. Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B et al (2009) Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med 46:1386–1391PubMedCrossRefPubMedCentralGoogle Scholar
  15. Evans AM (2006) AMP-activated protein kinase and the regulation of Ca2+ signalling in O2-sensing cells. J Physiol 574:113–123PubMedCrossRefPubMedCentralGoogle Scholar
  16. Evans AM, Dipp M (2002) Hypoxic pulmonary vasoconstriction: cyclic adenosine diphosphate-ribose, smooth muscle Ca(2+) stores and the endothelium. Respir Physiol Neurobiol 132:3–15PubMedCrossRefGoogle Scholar
  17. Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P et al (2005) Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280:41504–41511PubMedCrossRefGoogle Scholar
  18. Evans AM, Hardie DG, Galione A, Peers C, Kumar P, Wyatt CN (2006) AMP-activated protein kinase couples mitochondrial inhibition by hypoxia to cell-specific Ca2+ signalling mechanisms in oxygen-sensing cells. Novartis Found Symp 272:234–252, discussion 52–8, 74–9PubMedCrossRefGoogle Scholar
  19. Evans AM, Hardie DG, Peers C, Mahmoud A (2011) Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 24:13–20PubMedCrossRefPubMedCentralGoogle Scholar
  20. Firth AL, Yuill KH, Smirnov SV (2008) Mitochondria-dependent regulation of Kv currents in rat pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 295:L61–L70PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201:1129–1139PubMedGoogle Scholar
  22. Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP et al (2014) Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation 129:864–874PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785PubMedCrossRefGoogle Scholar
  25. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995) 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270:27186–27191PubMedCrossRefGoogle Scholar
  26. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S et al (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11:554–565PubMedCrossRefPubMedCentralGoogle Scholar
  28. Heymans C, Bouckaert JJ, Dautrebande L (1930) Sinus carotidien et refléxes respiratoires. II. Influences respiratoires réflexes de l’acidose, de l’alcalose, de l’anhydride carbonique, de l’ion hydrogéne et de l’anoxémie: sinus carotidiens et échanges respiratoires dans les poumons et au dela poumons. Arch Int Pharmacodyn Ther 39:400–408Google Scholar
  29. Ibe JC, Zhou Q, Chen T, Tang H, Yuan JX, Raj JU et al (2013) Adenosine monophosphate-activated protein kinase is required for pulmonary artery smooth muscle cell survival and the development of hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 49:609–618PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250:C663–C675PubMedGoogle Scholar
  31. Kato M, Staub NC (1966) Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 19:426–440PubMedCrossRefGoogle Scholar
  32. Leach RM, Robertson TP, Twort CH, Ward JP (1994) Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. Am J Physiol 266:L223–L231PubMedGoogle Scholar
  33. Leach RM, Hill HM, Snetkov VA, Robertson TP, Ward JP (2001) Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor. J Physiol 536:211–224PubMedCrossRefPubMedCentralGoogle Scholar
  34. Lejeune P, Vachiery JL, Leeman M, Brimioulle S, Hallemans R, Melot C et al (1989) Absence of parasympathetic control of pulmonary vascular pressure-flow plots in hyperoxic and hypoxic dogs. Respir Physiol 78:123–133PubMedCrossRefGoogle Scholar
  35. Lu W, Wang J, Shimoda LA, Sylvester JT (2008) Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 295:L104–L113PubMedCrossRefPubMedCentralGoogle Scholar
  36. Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35:405–428PubMedGoogle Scholar
  37. Naeije R, Lejeune P, Leeman M, Melot C, Closset J (1989) Pulmonary vascular responses to surgical chemodenervation and chemical sympathectomy in dogs. J Appl Physiol 66:42–50PubMedGoogle Scholar
  38. Nisell O (1951) The influence of blood gases on the pulmonary vessels of the cat. Acta Physiol Scand 23:85–90PubMedCrossRefGoogle Scholar
  39. Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S et al (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435PubMedCrossRefGoogle Scholar
  40. Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348:607–614PubMedCrossRefPubMedCentralGoogle Scholar
  41. Post JM, Hume JR, Archer SL, Weir EK (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 262:C882–C890PubMedGoogle Scholar
  42. Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D et al (2007) Function of Kv1.5 channels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am J Physiol Cell Physiol 292:C1837–C1853PubMedCrossRefGoogle Scholar
  43. Robertson TP, Dipp M, Ward JP, Aaronson PI, Evans AM (2000) Inhibition of sustained hypoxic vasoconstriction by Y-27632 in isolated intrapulmonary arteries and perfused lung of the rat. Br J Pharmacol 131:5–9PubMedCrossRefPubMedCentralGoogle Scholar
  44. Robertson TP, Ward JP, Aaronson PI (2001) Hypoxia induces the release of a pulmonary-selective, Ca(2+)-sensitising, vasoconstrictor from the perfused rat lung. Cardiovasc Res 50:145–150PubMedCrossRefGoogle Scholar
  45. Robertson TP, Mustard KJ, Lewis TH, Clark JH, Wyatt CN, Blanco EA et al (2008) AMP-activated protein kinase and hypoxic pulmonary vasoconstriction. Eur J Pharmacol 595:39–43PubMedCrossRefPubMedCentralGoogle Scholar
  46. Robin ED, Theodore J, Burke CM, Oesterle SN, Fowler MB, Jamieson SW et al (1987) Hypoxic pulmonary vasoconstriction persists in the human transplanted lung. Clin Sci 72:283–287PubMedCrossRefGoogle Scholar
  47. Roy CS, Sherrington CS (1890) On the regulation of the blood-supply of the brain. J Physiol 11(85–158):17PubMedGoogle Scholar
  48. Sommer N, Pak O, Schorner S, Derfuss T, Krug A, Gnaiger E et al (2010) Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. Eur Respir J 36:1056–1066PubMedCrossRefGoogle Scholar
  49. Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078PubMedCrossRefGoogle Scholar
  50. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG et al (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203:1665–1670PubMedCrossRefPubMedCentralGoogle Scholar
  51. Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498:503–510PubMedCrossRefPubMedCentralGoogle Scholar
  52. Thompson RJ, Buttigieg J, Zhang M, Nurse CA (2007) A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells. Neuroscience 145:130–141PubMedCrossRefGoogle Scholar
  53. Turner PJ, Buckler KJ (2013) Oxygen and mitochondrial inhibitors modulate both monomeric and heteromeric TASK-1 and TASK-3 channels in mouse carotid body type-1 cells. J Physiol 591:5977–5998PubMedCrossRefPubMedCentralGoogle Scholar
  54. von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320CrossRefGoogle Scholar
  55. Wang J, Shimoda LA, Sylvester JT (2004) Capacitative calcium entry and TRPC channel proteins are expressed in rat distal pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286:L848–L858PubMedCrossRefGoogle Scholar
  56. Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88:1259–1266Google Scholar
  57. Weissmann N, Ebert N, Ahrens M, Ghofrani HA, Schermuly RT, Hanze J et al (2003) Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs. Am J Respir Cell Mol Biol 29:721–732PubMedCrossRefGoogle Scholar
  58. Wilson SM, Mason HS, Smith GD, Nicholson N, Johnston L, Janiak R et al (2002) Comparative capacitative calcium entry mechanisms in canine pulmonary and renal arterial smooth muscle cells. J Physiol 543:917–931PubMedCrossRefPubMedCentralGoogle Scholar
  59. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR et al (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33PubMedCrossRefGoogle Scholar
  60. Wyatt CN, Buckler KJ (2004) The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol 556:175–191PubMedCrossRefPubMedCentralGoogle Scholar
  61. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Mark Evans
    • 1
    Email author
  • Sophronia A. Lewis
    • 1
  • Oluseye A. Ogunbayo
    • 1
  • Javier Moral-Sanz
    • 1
  1. 1.Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, Hugh Robson BuildingUniversity of EdinburghEdinburghUK

Personalised recommendations