Social-QAS: Tailorable Quality Assessment Service for Social Media Content

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9083)


More than 3 billion people use the Internet, many of whom also use social media services such as the social network Facebook with about 1.35 billion active users monthly or the microblogging platform Twitter numbering approximately 284 million active users monthly. This paper researches how a tailorable quality assessment service can assist the use of citizen-generated content from social media. In particular, we want to study how users can articulate their personal quality criteria appropriately. A presentation of related work is followed by an empirical study on the use of social media in the field of emergency management, focusing on situation assessment practices by the emergency services. Based on this, we present the tailorable quality assessment service (QAS) for social media content, which has been implemented and integrated into an existing application for both volunteers and the emergency services.


Social media Information quality Tailoring End User Development Emergencies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling end user development through mashups: requirements, abstractions and innovation toolkits. In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 9–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Carr, N.: The Glass Cage: Automation and Us. Norton, New York (2014)Google Scholar
  3. 3.
    Chowdhury, S., et al.: Tweet4act: using incident-specific profiles for classifying crisis-related messages. In: Proc. ISCRAM, Baden-Baden, Germany, pp. 834–839 (2013)Google Scholar
  4. 4.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors. 37(1), 32–64 (1995)CrossRefGoogle Scholar
  5. 5.
    Fischer, G., Scharff, E.: Meta-design – design for designers. In: Boyarski, D., Kellogg, W. (eds.) In: Proceedings of the International Conference on Designing Interactive Systems, pp. 396–405. ACM, New York (2000)Google Scholar
  6. 6.
    Friberg, T., et al.: Analysis of information quality criteria in crisis situation as a characteristic of complex situations. In: Proc. IQ, Little Rock, USA (2010)Google Scholar
  7. 7.
    Gantt, M., Nardi, B.: Gardeners and gurus: patterns of cooperation among CAD users. In: Proc. CHI, pp. 107–117 (1992)Google Scholar
  8. 8.
    Giles, J.: Internet encyclopaedias go head to head. Nature 438, 900–901 (2005)CrossRefGoogle Scholar
  9. 9.
    Henderson, A., Kyng, M.: There’s no place like home: continuing design in use. In: Greenbaum, J., Kyng, M. (eds.) Design at Work Cooperative Design of Computer Systems, pp. 219–240. Lawrence Erlbaum Associates (1991)Google Scholar
  10. 10.
    Hiltz, S., Plotnick, L.: Dealing with information overload when using social media for emergency management: emerging solutions. In: Proc. ISCRAM, Baden-Baden, Germany, pp. 823–827 (2013)Google Scholar
  11. 11.
    Kaufhold, M.-A., Reuter, C.: Vernetzte Selbsthilfe in Sozialen Medien beim Hochwasser 2013 in Deutschland. i-com. 13(1), 20–28 (2014)CrossRefGoogle Scholar
  12. 12.
    Ley, B., et al.: Supporting improvisation work in inter-organizational crisis management. In: Proc. CHI, pp. 1529–1538. ACM Press, Austin (2012)Google Scholar
  13. 13.
    Lieberman, H., et al.: End-User Development. Springer, Dordrecht (2006)CrossRefGoogle Scholar
  14. 14.
    Ludwig, T., et al.: Crowdmonitor: mobile crowd sensing for assessing physical and digital activities of citizens during emergencies. In: Proceedings of the Conference on Human Factors in Computing Systems (CHI). ACM Press, Seoul, (2015)Google Scholar
  15. 15.
    Ludwig, T., Reuter, C., Pipek, V.: Social Haystack: Dynamic Quality Assessment of Citizen-Generated Content in Social Media during Emergencies. ToCHI (2015, in press)Google Scholar
  16. 16.
    Ludwig, T., et al.: What you see is what i need: mobile reporting practices in emergencies. In: Bertelsen, O.W., et al. (eds.) Proc. ECSCW, pp. 181–206. Springer, Paphos (2013)Google Scholar
  17. 17.
    MacLean, A., et al.: User-tailorable systems: pressing the issues with buttons. In: Proc. CHI. Seattle, USA (1990)Google Scholar
  18. 18.
    Marcus, A., et al.: Twitinfo: aggregating and visualizing microblogs for event exploration. In: Proc. CHI, Vancouver, Canada, pp. 227–236 (2011)Google Scholar
  19. 19.
    McClendon, S., Robinson, A.C.: Leveraging geospatially-oriented social media communications in disaster response. In: Proc. ISCRAM, Vancouver, Canada (2012)Google Scholar
  20. 20.
    Organisation for Economic Co-operation and Development (OECD): Participative Web: User-Created Content.
  21. 21.
    Pipek, V., Wulf, V.: Infrastructuring: Toward an Integrated Perspective on the Design and Use of Information Technology. J. Assoc. Inf. Syst. 10(5), 447–473 (2009)Google Scholar
  22. 22.
    Reuter, C., et al.: Ad Hoc Participation in Situation Assessment: Supporting Mobile Collaboration in Emergencies. ACM Trans. Comput. Interact. 21(5) (2014)Google Scholar
  23. 23.
    Reuter, C.: Emergent Collaboration Infrastructures: Technology Design for Inter-Organizational Crisis Management (Ph.D. Thesis). Springer Gabler, Siegen, Germany (2014)Google Scholar
  24. 24.
    Reuter, C., et al.: Entwicklung eines SOA-basierten und anpassbaren bewertungsdienstes für inhalte aus sozialen medien. In: Plöderereder, E., et al. (eds.) Informatik 2014, Stuttgart, Germany. GI-LNI, pp. 977–988 (2014)Google Scholar
  25. 25.
    Reuter, C., et al.: XHELP: design of a cross-platform social-media application to support volunteer moderators in disasters. In: Proc. CHI. ACM Press, Seoul (2015)Google Scholar
  26. 26.
    Reuter, C., Ritzkatis, M.: Adaptierbare bewertung bürgergenerierter inhalte aus sozialen medien. In: Koch, M., et al. (eds.) Mensch & Computer 2014, pp. 115–124. Oldenbourg-Verlag, München (2014)Google Scholar
  27. 27.
    Reuter, C., Scholl, S.: Technical limitations for designing applications for social media. In: Koch, M., et al. (eds.) Mensch & Computer 2014: Workshopband, pp. 131–140. Oldenbourg-Verlag, München (2014)Google Scholar
  28. 28.
    Rizza, C., et al.: Do-it-yourself justice-considerations of social media use in a crisis situation: the case of the 2011 vancouver riots. In: Proc. ISCRAM, Baden-Baden, Germany, pp. 411–415 (2013)Google Scholar
  29. 29.
    Robinson, A., et al.: Understanding the utility of geospatial information in social media. In: Proc. ISCRAM, Baden-Baden, Germany, pp. 918–922 (2013)Google Scholar
  30. 30.
    Simon, H.A.: Designing organizations for an information-rich world. In: Greenberger, M. (ed.) Computers, Communication, and the Public Interest, pp. 40–41. The Johns Hopkins Press, Baltimore (1971)Google Scholar
  31. 31.
    Starbird, K., Palen, L.: Voluntweeters: self-organizing by digital volunteers in times of crisis. In: Proc. CHI, pp. 1071–1080. ACM-Press, Vancouver (2011)Google Scholar
  32. 32.
    Starbird, K., Stamberger, J.: Tweak the tweet: leveraging microblogging proliferation with a prescriptive syntax to support citizen reporting. In: French, S., et al. (eds.) Proc. ISCRAM. Seattle, USA (2010)Google Scholar
  33. 33.
    Stevens, G., Pipek, V., Wulf, V.: Appropriation infrastructure: supporting the design of usages. In: Pipek, V., Rosson, M.B., de Ruyter, B., Wulf, V. (eds.) IS-EUD 2009. LNCS, vol. 5435, pp. 50–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  34. 34.
    Strauss, A.L.: Qualitative Analysis for Social Scientists. Cambridge Press (1987)Google Scholar
  35. 35.
    Terpstra, T., et al.: Towards a realtime twitter analysis during crises for operational crisis management. In: Proc. ISCRAM, Vancouver, Canada, pp. 1–9 (2012)Google Scholar
  36. 36.
    Thomson, R., et al.: Trusting tweets: the fukushima disaster and information source credibility on twitter. In: Proc. ISCRAM, Vancouver, Canada, pp. 1–10 (2012)Google Scholar
  37. 37.
    Turoff, M., et al.: The design of a dynamic emergency response management information system (DERMIS). J. Inf. Technol. Theory Appl. 5(4), 1–35 (2004)Google Scholar
  38. 38.
    Verma, S., et al.: Natural language processing to the rescue? extracting “situational awareness” tweets during mass emergency. In: ICWSM, pp. 385–392 (2011)Google Scholar
  39. 39.
    Vivacqua, A.S., Borges, M.R.S.: Taking advantage of collective knowledge in emergency response systems. J. Netw. Comput. Appl. 35(1), 189–198 (2012)CrossRefGoogle Scholar
  40. 40.
    Van de Walle, B., Turoff, M.: Decision support for emergency situations. Inf. Syst. E-bus. Manag. 6(3), 295–316 (2008)CrossRefGoogle Scholar
  41. 41.
    Wulf, V., et al.: Engaging with practices: design case studies as a research framework in CSCW. In: Proceedings of the Conference on Computer Supported Cooperative Work (CSCW), pp. 505–512. ACM Press, Hangzhou (2011)Google Scholar
  42. 42.
    Zagel, B.: Soziale netzwerke als impulsgeber für das verkehrs-und sicherheitsmanagement bei großveranstaltungen. In: Koch, A., et al. (eds.) Geoinformationssysteme, pp. 223–232. VDE Verlag GMBH, Berlin (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute for Information SystemsUniversity of SiegenSiegenGermany

Personalised recommendations