An Attempt to Automate the Simplification of Building Objects in Multiresolution Databases

  • Michał LupaEmail author
  • Krystian Kozioł
  • Andrzej Leśniak
Part of the Communications in Computer and Information Science book series (CCIS, volume 521)


The paper presents a method for the simplification of building objects in multiresolution databases. The authors present a theoretical foundation, practical ways to implement the method, examples of results, as well as a comparison with currently available generalization methods in commercial software. This algorithm allows the verifiability and reproducibility of results to be kept while minimising graphic conflicts, which are a major problem during the automatic generalisation process. These results are achieved by defining the shape of buildings, employing classification rules and adopting minimum measures of recognition on a digital map. Solutions included in this paper are universal and can successfully be used as a component in any automated cartographic generalisation process. Moreover, these methods will help to get closer to full automation of the data generalisation process and hence the automatic production of digital maps.


Building generalisation Cartographic generalisation GIS Spatial databasess 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dz. U. z 2013 r. poz. 383 Rozporządzenie ministra administracji i cyfryzacji z 12 lutego 2013 r. w sprawie bazy danych geodezyjnej ewidencji sieci uzbrojenia terenu, bazy danych obiektów topograficznych oraz mapy zasadniczejGoogle Scholar
  2. 2.
    Dz.U. z 2010 nr 76 poz. 489 Ustawa z dnia 4 marca 2010 r. o infrastrukturze informacji przestrzennejGoogle Scholar
  3. 3.
    Bajerski, P.: Optimization of geofield queries. In: Proceedings of the 1st IEEE International Conference on Information Technology, pp. 1–4 (2008)Google Scholar
  4. 4.
    Bajerski, P.: How to Efficiently Generate PNR Representation of a Qualitative Geofield. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 595–603. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bajerski, P., Kozielski, S.: Computational Model for Efficient Processing of Geofield Queries. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds.) Man-Machine Interactions. AISC, vol. 59, pp. 573–583. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Brassel, K.E., Weibel, R.: A review and conceptual framework of automated map generalization. International Journal of Geographical Information Science 2, 229–244 (1988)CrossRefGoogle Scholar
  7. 7.
    Chrobak, T., Keller, S.K., Kozioł, K., Szostak, M., Zukowska, M.: The basics of digital cartographic generalization. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH (2007)Google Scholar
  8. 8.
    Chrobak, T., Kozioł, K., Krawczyk, A., Lupa, M., Szombara, S.: Automatization of Generalization Process in Multiresolution Databases. Wydawnictwa AGH (2013)Google Scholar
  9. 9.
    Kozioł, K.: Operators for building generalization. Annals of Geomatics 10 (2000)Google Scholar
  10. 10.
    Kozioł, K., Lupa, M., Krawczyk, A.: The Extended Structure of Multi-resolution Database. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 424, pp. 435–443. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Lupa, M., Piórkowski, A.: Spatial Query Optimization Based on Transformation of Constraints. In: Gruca, A., Czachórski, T., Kozielski, S. (eds.) Man-Machine Interactions 3. AISC, vol. 242, pp. 627–636. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Mackaness, W., Ruas, A., Sarjakoski, T.: Observation and Research Challenges in Map Generalisation and Multiple Representation. In: Generalisation of Geographic Information Cartographic Modelling and Applications, pp. 315–323. Elsevier (2007)Google Scholar
  13. 13.
    McMaster, R.B., Shea, S.K.: Generazization in Digital Cartography. In: Resource Publications for College Geography Resource Publications in Geography, pp. 1–67. Association of American Geographers (1992)Google Scholar
  14. 14.
    Olszewski, R.: Cartographic modelling of terrain relief with the use of computational intelligence methods (habilitation thesis). In: Prace Naukowe Politechniki Warszawskiej. seria Geodezja, Oficyna Wydawnicza Politechniki Warszawskiej (2009)Google Scholar
  15. 15.
    Saliszczew, K.A.: Kartografia Ogolna. Wydawnictwo Naukowe PWN (1998)Google Scholar
  16. 16.
    Sester, M.: Generalization based on least squares adjustment. In: International Archives of Photogrammetry and Remote Sensing, pp. 931–938. ISPRS Archives (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michał Lupa
    • 1
    Email author
  • Krystian Kozioł
    • 2
  • Andrzej Leśniak
    • 1
  1. 1.Department of Geoinformatics and Applied Computer ScienceCracowPoland
  2. 2.Department of GeomaticsAGH University of Science and TechnologyCracowPoland

Personalised recommendations