A Universal Cuboid-Based Integration Architecture for Polyglotic Querying of Heterogeneous Datasources

  • Michał Chromiak
  • Piotr Wiśniewski
  • Krzysztof Stencel
Part of the Communications in Computer and Information Science book series (CCIS, volume 521)

Abstract

Fortunately, the industry has eventually abandoned the old “one-size fits all” relational dream and started to develop task-oriented storage solutions. Nowadays, in a big project a devotion to a single persistence mechanism usually leads to suboptimal architectures. A combination of appropriate storage engines is often the best solution. However, such a combination implies a significant growth of data integrity maintenance. In this paper we describe a solution to this problem, i.e. a cuboid-based universal integration architecture. It allows hiding the peculiarities of integration so that it is transparent to the application programmer. We use graphs as an example of data that needs a task-oriented database in order to be efficiently processed. We show how graph queries can be effectively executed with the help of a graph database assisting a relational database. The proposed solution does not impose any additional complexity for programmers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burzańska, M., Stencel, K., Suchomska, P., Szumowska, A., Wiśniewski, P.: Recursive queries using object relational mapping. In: Kim, T.-H., Lee, Y.-H., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 42–50. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Burzańska, M., Stencel, K., Wiśniewski, P.: Pushing predicates into recursive SQL common table expressions. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.) ADBIS 2009. LNCS, vol. 5739, pp. 194–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Chromiak, M., Stencel, K.: The linkup data structure for heterogeneous data integration platform. In: Kim, T.-H., Lee, Y.-h., Fang, W.-C. (eds.) FGIT 2012. LNCS, vol. 7709, pp. 263–274. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-35585-1_36 CrossRefGoogle Scholar
  4. 4.
    Chromiak, M., Stencel, K.: A data model for heterogeneous data integration architecture. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 547–556. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-06932-6_53 CrossRefGoogle Scholar
  5. 5.
    Chromiak, M., Wisniewski, P., Stencel, K.: Exploiting order dependencies on primary keys for optimization. In: Proceedings of the 23rd International Workshop on Concurrency, Specification and Programming, Chemnitz, Germany, September 29 - October 1, pp. 58–68 (2014), http://ceur-ws.org/Vol-1269/paper58.pdf (accessed: February 06, 2015)
  6. 6.
    Cloudkick: 4 months with Cassandra, a love story (March 2010), https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/ (accessed: November 12, 2013)
  7. 7.
    Ghazal, A., Crolotte, A., Seid, D.Y.: Recursive SQL query optimization with k-iteration lookahead. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 348–357. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: Comparison of cypher, gremlin and native access in neo4j. In: EDBT/ICDT 2013, pp. 195–204. ACM, New York (2013), http://doi.acm.org/10.1145/2457317.2457351 Google Scholar
  9. 9.
    Hunger, M.: Load csv with success (2014), http://jexp.de/blog/2014/10/load-cvs-with-success/(accessed: February 06, 2015)
  10. 10.
    Neo4j: Load csv into neo4j quickly and successfully (2014), http://jexp.de/blog/2014/06/load-csv-into-neo4j-quickly-and-successfully/ (accessed: February 06, 2015)
  11. 11.
    Ordonez, C.: Optimization of linear recursive queries in sql. IEEE Trans. Knowl. Data Eng. 22(2), 264–277 (2010)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Plugge, E., Hawkins, T., Membrey, P.: The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing, 1st edn. Apress, Berkely (2010)CrossRefGoogle Scholar
  13. 13.
    Przymus, P., Boniewicz, A., Burzańska, M., Stencel, K.: Recursive query facilities in relational databases: A survey. In: FGIT-DTA/BSBT, pp. 89–99 (2010)Google Scholar
  14. 14.
    Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Efficient implementation of recursive queries in major object relational mapping systems. In: Kim, T.-h., Adeli, H., Slezak, D., Sandnes, F.E., Song, X., Chung, K.-i., Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 78–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Extending HQL with plain recursive facilities. In: Morzy, T., Härder, T., Wrembel, R. (eds.) Advances in Databases and Information Systems. AISC, vol. 186, pp. 265–272. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Van Bruggen, R.: Learning Neo4j. Packt, Birmingham (2014)Google Scholar
  17. 17.
    Wiśniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.: Hibernate the recursive queries - defining the recursive queries using Hibernate ORM. In: ADBIS (2), pp. 190–199 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Michał Chromiak
    • 1
  • Piotr Wiśniewski
    • 2
  • Krzysztof Stencel
    • 3
  1. 1.Institute of InformaticsMaria Curie Skłodowska UniversityLublinPoland
  2. 2.Faculty of Mathematics and Computer ScienceNicolaus Copernicus UniversityToruńPoland
  3. 3.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations