Lung Transplantation and the Blood–Gas Barrier

  • Anke Schnapper
  • Matthias Ochs


The blood–gas barrier (BGB) is subjected to a variety of stressors during all the phases of lung transplantation. These result in ischemia-reperfusion (IR) injury and can manifest clinically as primary graft dysfunction (PGD). IR injury affects the epithelium, interstitium, and endothelium of the alveolar septa as well as the pulmonary surfactant system. It leads to functional and morphological damage and death of pulmonary cells, largely due to an inflammatory response by activated resident cells as well as inflammatory cell infiltration, which is governed by a large number of mediators. Since PGD is the major cause of early morbidity and mortality after lung transplantation, much effort is undertaken from organ procurement to preservation and implantation to prevent or ameliorate IR injury, including surgical management procedures and pharmacological additives to perfusion solutions or ventilation gas. In particular, to increase the rate of transplantable donor organs, very promising results are achieved by the new technique of ex vivo lung perfusion (EVLP). Beyond the immediate transplantation period, the BGB is jeopardized in certain forms of acute rejection and chronic lung allograft dysfunction.


Lung Transplantation Brain Death Bronchiolitis Obliterans Syndrome Donor Lung Acute Allograft Rejection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Acute lung injury


Acute antibody-mediated rejection


Acute respiratory distress syndrome


Bronchoalveolar lavage


Blood-gas barrier


Bronchiolitis obliterans syndrome


Complement 4d


Caspase-independent cell death


Chronic lung allograft dysfunction


Donated after brain death


Donated after cardiac death


Donor-specific antibodies


Extracorporal membrane oxygenation


Ex vivo lung perfusion


Forced expiratory volume in 1 s




International Society for Heart and Lung Transplantation


Low-potassium dextran


Non-heart-beating donors


Natural killer cells


Nitric oxide


Obliterative bronchiolitis


Positive end-expiratory pressure


Primary graft dysfunction


Pulmonary vascular resistance


Restrictive allograft syndrome


Reactive oxygen species

SA/LA ratio

Small aggregate to large aggregate ratio


Surfactant protein


Total lung capacity


  1. Abe A, Hiraoka M, Wild S, Wilcoxen SE, Paine R III, Shayman JA. Lysosomal phospholipase A2 is selectively expressed in alveolar macrophages. J Biol Chem. 2004;279:42605–11.PubMedCrossRefGoogle Scholar
  2. Adoumie R, Serrick C, Giaid A, Shennib H. Early cellular events in the lung allograft. Ann Thorac Surg. 1992;54:1071–6.PubMedCrossRefGoogle Scholar
  3. Aigner C, Slama A, Hotzenecker K, Scheed A, Urbanek B, Schmid W, et al. Clinical ex vivo lung perfusion–pushing the limits. Am J Transplant. 2012;12:1839–47.PubMedCrossRefGoogle Scholar
  4. Akao T, Takeyoshi I, Totsuka O, Arakawa K, Muraoka M, Kobayashi K, et al. Effect of the free radical scavenger MCI-186 on pulmonary ischemia-reperfusion injury in dogs. J Heart Lung Transplant. 2006;25:965–71.PubMedCrossRefGoogle Scholar
  5. Aoyama A, Chen F, Fujinaga T, Sato A, Tsuruyama T, Zhang J, et al. Post-ischemic infusion of atrial natriuretic peptide attenuates warm ischemia-reperfusion injury in rat lung. J Heart Lung Transplant. 2009;28:628–34.PubMedCrossRefGoogle Scholar
  6. Avlonitis VS, Wigfield CH, Golledge HD, Kirby JA, Dark JH. Early hemodynamic injury during donor brain death determines the severity of primary graft dysfunction after lung transplantation. Am J Transplant. 2007;7:83–90.PubMedCrossRefGoogle Scholar
  7. Berry G, Burke M, Andersen C, Angelini A, Bruneval P, Calabrese F, et al. Pathology of pulmonary antibody-mediated rejection: 2012 update from the Pathology Council of the ISHLT. J Heart Lung Transplant. 2013;32:14–21.PubMedCrossRefGoogle Scholar
  8. Bhorade SM, Vigneswaran W, McCabe MA, Garrity ER. Liberalization of donor criteria may expand the donor pool without adverse consequence in lung transplantation. J Heart Lung Transplant. 2000;19:1199–204.PubMedCrossRefGoogle Scholar
  9. Bittner HB, Richter M, Kuntze T, Rahmel A, Dahlberg P, Hertz M, et al. Aprotinin decreases reperfusion injury and allograft dysfunction in clinical lung transplantation. Eur J Cardiothorac Surg. 2006;29:210–5.PubMedCrossRefGoogle Scholar
  10. Botha P, Jeyakanthan M, Rao JN, Fisher AJ, Prabhu M, Dark JH, et al. Inhaled nitric oxide for modulation of ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant. 2007;26:1199–205.PubMedCrossRefGoogle Scholar
  11. Chen KH, Chao D, Liu CF, Chen CF, Wang D. Ischemia and reperfusion of the lung tissues induced increase of lung permeability and lung edema is attenuated by dimethylthiourea (PP69). Transplant Proc. 2010;42:748–50.PubMedCrossRefGoogle Scholar
  12. Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2005a;24:1454–9.PubMedCrossRefGoogle Scholar
  13. Christie JD, Kotloff RM, Ahya VN, Tino G, Pochettino A, Gaughan C, et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med. 2005b;171:1312–6.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Christie JD, Sager JS, Kimmel SE, Ahya VN, Gaughan C, Blumenthal NP, et al. Impact of primary graft failure on outcomes following lung transplantation. Chest. 2005c;127:161–5.PubMedCrossRefGoogle Scholar
  15. Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant. 2012;31:1073–86.PubMedCrossRefGoogle Scholar
  16. Cypel M, Keshavjee S. Extracorporeal lung perfusion. Curr Opin Organ Transplant. 2011;16:469–75.PubMedCrossRefGoogle Scholar
  17. Cypel M, Keshavjee S. Strategies for safe donor expansion: donor management, donations after cardiac death, ex-vivo lung perfusion. Curr Opin Organ Transplant. 2013;18:513–7.PubMedCrossRefGoogle Scholar
  18. Cypel M, Liu M, Rubacha M, Yeung JC, Hirayama S, Anraku M, et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med. 2009a;1:4ra9.PubMedCrossRefGoogle Scholar
  19. Cypel M, Rubacha M, Yeung J, Hirayama S, Torbicki K, Madonik M, et al. Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. Am J Transplant. 2009b;9:2262–9.PubMedCrossRefGoogle Scholar
  20. Cypel M, Yeung JC, Keshavjee S. Preservation of the donor lung. In: Vigneswaran WT, Garrity ER, editors Lung transplantation. London: Informa healthcare; 2010. p. 115–24.Google Scholar
  21. Cypel M, Yeung JC, Machuca T, Chen M, Singer LG, Yasufuku K, et al. Experience with the first 50 ex vivo lung perfusions in clinical transplantation. J Thorac Cardiovasc Surg. 2012;144:1200–6.PubMedCrossRefGoogle Scholar
  22. Dark JH, Karamanou D, Clark S, et al. Successful transplantation of unusable donor lungs using ex-vivo lung perfusion: The Newcastle experience. J Heart Lung Transplant. 2014;31:S115.CrossRefGoogle Scholar
  23. Date H, Matsumura A, Manchester JK, Cooper JM, Lowry OH, Cooper JD. Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation. The maintenance of aerobic metabolism during lung preservation. J Thorac Cardiovasc Surg. 1993;105:492–501.PubMedGoogle Scholar
  24. Date H, Triantafillou AN, Trulock EP, Pohl MS, Cooper JD, Patterson GA. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111:913–9.PubMedCrossRefGoogle Scholar
  25. De Oliveira NC, Osaki S, Maloney JD, Meyer KC, Kohmoto T, D’Alessandro AM, et al. Lung transplantation with donation after cardiac death donors: long-term follow-up in a single center. J Thorac Cardiovasc Surg. 2010;139:1306–15.PubMedCrossRefGoogle Scholar
  26. De Perrot M, Sekine Y, Fischer S, Waddell TK, McRae K, Liu M, et al. Interleukin-8 release during ischemia-reperfusion correlates with early graft function in human lung transplantation. J Heart Lung Transplant. 2001a;20:175–6.PubMedCrossRefGoogle Scholar
  27. De Perrot M, Fischer S, Liu M, Jin R, Bai XH, Waddell TK, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury: a shift from pro- to anti-inflammatory cytokines. Transplantation. 2001b;72:1505–12.PubMedCrossRefGoogle Scholar
  28. De Perrot M, Fischer S, Liu M, Jin R, Bai XH, Waddell TK, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury: a shift from pro- to anti-inflammatory cytokines. Transplantation. 2001c;72:1505–12.PubMedCrossRefGoogle Scholar
  29. De Perrot M, Fischer S, Liu M, Jin R, Bai XH, Waddell TK, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury: a shift from pro- to anti-inflammatory cytokines. Transplantation. 2001d;72:1505–12.PubMedCrossRefGoogle Scholar
  30. De Perrot M, Sekine Y, Fischer S, Waddell TK, McRae K, Liu M, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med. 2002;165:211–5.PubMedCrossRefGoogle Scholar
  31. Den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299:H1283–99.PubMedCrossRefGoogle Scholar
  32. DeNicola MM, Weigt SS, Belperio JA, Reed EF, Ross DJ, Wallace WD. Pathologic findings in lung allografts with anti-HLA antibodies. J Heart Lung Transplant. 2013;32:326–32.PubMedCrossRefGoogle Scholar
  33. Diamond JM, Lee JC, Kawut SM, Shah RJ, Localio AR, Bellamy SL, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2013;187:527–34.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Dong B, Stewart PW, Egan TM. Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors. J Thorac Cardiovasc Surg. 2013;146:429–36.PubMedCrossRefGoogle Scholar
  35. D’Ovidio F, Kaneda H, Chaparro C, Mura M, Lederer D, Di AS, et al. Pilot study exploring lung allograft surfactant protein A (SP-A) expression in association with lung transplant outcome. Am J Transplant. 2013;13:2722–9.PubMedCrossRefGoogle Scholar
  36. Dreyer N, Mühlfeld C, Fehrenbach A, Pech T, von BS, Nagib R, et al. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells. Respir Res. 2008;9:5.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Emaminia A, Lapar DJ, Zhao Y, Steidle JF, Harris DA, Laubach VE, et al. Adenosine A(2)A agonist improves lung function during ex vivo lung perfusion. Ann Thorac Surg. 2011;92:1840–6.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Eppinger MJ, Deeb GM, Bolling SF, Ward PA. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol. 1997;150:1773–84.PubMedCentralPubMedGoogle Scholar
  39. Erasmus ME, Verschuuren EA, Nijkamp DM, Vermeyden JW, van der Bij W. Lung transplantation from nonheparinized category III non-heart-beating donors. A single-centre report. Transplantation. 2010;89:452–7.PubMedCrossRefGoogle Scholar
  40. Fehrenbach H, Brasch F, Uhlig S, Weisser M, Stamme C, Wendel A, et al. Early alterations in intracellular and alveolar surfactant of the rat lung in response to endotoxin. Am J Respir Crit Care Med. 1998a;157:1630–9.PubMedCrossRefGoogle Scholar
  41. Fehrenbach H, Wahlers T, Ochs M, Brasch F, Schmiedl A, Hirt SW, et al. Ultrastructural pathology of the alveolar type II pneumocytes of human donor lungs. Electron microscopy, stereology, and microanalysis. Virchows Arch. 1998b;432:229–39.PubMedCrossRefGoogle Scholar
  42. Fehrenbach H, Schepelmann D, Albes JM, Bando T, Fischer F, Fehrenbach A, et al. Pulmonary ischemia/reperfusion injury: a quantitative study of structure and function in isolated heart-lungs of the rat. Anat Rec. 1999;255:84–9.PubMedCrossRefGoogle Scholar
  43. Fehrenbach A, Ochs M, Warnecke T, Wahlers T, Wittwer T, Schmiedl A, et al. Beneficial effect of lung preservation is related to ultrastructural integrity of tubular myelin after experimental ischemia and reperfusion. Am J Respir Crit Care Med. 2000;161:2058–65.PubMedCrossRefGoogle Scholar
  44. Fehrenbach A, Fehrenbach H, Wittwer T, Ochs M, Wahlers T, Richter J. Evaluation of pulmonary edema: stereological versus gravimetrical analysis. Eur Surg Res. 2001;33:270–8.PubMedCrossRefGoogle Scholar
  45. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73:1907–16.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Fischer S, Cassivi SD, Xavier AM, Cardella JA, Cutz E, Edwards V, et al. Cell death in human lung transplantation: apoptosis induction in human lungs during ischemia and after transplantation. Ann Surg. 2000a;231:424–31.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Fischer S, Maclean AA, Liu M, Cardella JA, Slutsky AS, Suga M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med. 2000b;162:1932–9.PubMedCrossRefGoogle Scholar
  48. Fischer S, Matte-Martyn A, de PM, Waddell TK, Sekine Y, Hutcheon M, et al. Low-potassium dextran preservation solution improves lung function after human lung transplantation. J Thorac Cardiovasc Surg. 2001;121:594–6.PubMedCrossRefGoogle Scholar
  49. Fischer S, de Perrot M, Liu M, Maclean AA, Cardella JA, Imai Y, et al. Interleukin 10 gene transfection of donor lungs ameliorates posttransplant cell death by a switch from cellular necrosis to apoptosis. J Thorac Cardiovasc Surg. 2003;126:1174–80.PubMedCrossRefGoogle Scholar
  50. Fiser SM, Tribble CG, Long SM, Kaza AK, Cope JT, Laubach VE, et al. Lung transplant reperfusion injury involves pulmonary macrophages and circulating leukocytes in a biphasic response. J Thorac Cardiovasc Surg. 2001;121:1069–75.PubMedCrossRefGoogle Scholar
  51. Gazoni LM, Walters DM, Unger EB, Linden J, Kron IL, Laubach VE. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2010;140:440–6.PubMedCentralPubMedCrossRefGoogle Scholar
  52. George TJ, Arnaoutakis GJ, Beaty CA, Jandu SK, Santhanam L, Berkowitz DE, et al. A physiologic and biochemical profile of clinically rejected lungs on a normothermic ex vivo lung perfusion platform. J Surg Res. 2013;183:75–83.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Gohrbandt B, Fischer S, Warnecke G, Avsar M, Sommer SP, Haverich A, et al. Glycine intravenous donor preconditioning is superior to glycine supplementation to low-potassium dextran flush preservation and improves graft function in a large animal lung transplantation model after 24 h of cold ischemia. J Thorac Cardiovasc Surg. 2006;131:724–9.PubMedCrossRefGoogle Scholar
  54. Gordon IO, Husain AN. Post-transplant lung pathology. In: Vigneswaran WT, Garrity ER, editors Lung Transplantation. London: Informa healthcare; 2010. p. 320–7.Google Scholar
  55. Grimminger F, von Kurten I, Walmrath D, Seeger W. Type II alveolar epithelial eicosanoid metabolism: predominance of cyclooxygenase pathways and transcellular lipoxygenase metabolism in co-culture with neutrophils. Am J Respir Cell Mol Biol. 1992;6:9–16.PubMedCrossRefGoogle Scholar
  56. Hsia CC, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181:394–418.PubMedCrossRefGoogle Scholar
  57. Huang HJ, Yusen RD, Meyers BF, Walter MJ, Mohanakumar T, Patterson GA, et al. Late primary graft dysfunction after lung transplantation and bronchiolitis obliterans syndrome. Am J Transplant. 2008;8:2454–62.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Ingemansson R, Massa G, Pandita RK, Sjoberg T, Steen S. Perfadex is superior to Euro-Collins solution regarding 24-hour preservation of vascular function. Ann Thorac Surg. 1995;60:1210–4.PubMedCrossRefGoogle Scholar
  59. Ingemansson R, Eyjolfsson A, Mared L, Pierre L, Algotsson L, Ekmehag B, et al. Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. Ann Thorac Surg. 2009;87:255–60.PubMedCrossRefGoogle Scholar
  60. Itano H, Zhang W, Ritter JH, McCarthy TJ, Mohanakumar T, Patterson GA. Adenovirus-mediated gene transfer of human interleukin 10 ameliorates reperfusion injury of rat lung isografts. J Thorac Cardiovasc Surg. 2000;120:947–56.PubMedCrossRefGoogle Scholar
  61. Iwazaki S, Takeyoshi I, Ohwada S, Sunose Y, Aiba M, Tsutsumi H, et al. FR128998 (a PAF receptor antagonist) counters the increased pulmonary vascular resistance associated with ischemia-reperfusion injury in the canine lung. Int J Angiol. 2001;10:10–4.PubMedCrossRefGoogle Scholar
  62. Kang CH, Anraku M, Cypel M, Sato M, Yeung J, Gharib SA, et al. Transcriptional signatures in donor lungs from donation after cardiac death vs after brain death: a functional pathway analysis. J Heart Lung Transplant. 2011;30:289–98.PubMedCrossRefGoogle Scholar
  63. Keshavjee S, Davis RD, Zamora MR, de PM, Patterson GA. A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. J Thorac Cardiovasc Surg. 2005;129:423–8.PubMedCrossRefGoogle Scholar
  64. Khimenko PL, Taylor AE. Segmental microvascular permeability in ischemia-reperfusion injury in rat lung. Am J Physiol. 1999;276:L958–L60.PubMedGoogle Scholar
  65. Kim JD, Baker CJ, Danto SI, Starnes VA, Barr ML. Modulation of pulmonary NA+ pump gene expression during cold storage and reperfusion. Transplantation. 2000;70:1016–20.PubMedCrossRefGoogle Scholar
  66. Knudsen L, Waizy H, Fehrenbach H, Richter J, Wahlers T, Wittwer T, et al. Ultrastructural changes of the intracellular surfactant pool in a rat model of lung transplantation-related events. Respir Res. 2011;12:79.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Knudsen L, Boxler L, Mühlfeld C, Schaefer IM, Becker L, Bussinger C, et al. Lung preservation in experimental ischemia/reperfusion injury and lung transplantation: a comparison of natural and synthetic surfactants. J Heart Lung Transplant. 2012;31:85–93.PubMedCrossRefGoogle Scholar
  68. Kohmoto J, Nakao A, Stolz DB, Kaizu T, Tsung A, Ikeda A, et al. Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant. 2007;7:2279–90.PubMedCrossRefGoogle Scholar
  69. Krishnadasan B, Naidu BV, Byrne K, Fraga C, Verrier ED, Mulligan MS. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003;125:261–72.PubMedCrossRefGoogle Scholar
  70. Kroemer G, Jäättelä M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886–97.PubMedCrossRefGoogle Scholar
  71. Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med. 2005;11:725–30.PubMedCrossRefGoogle Scholar
  72. Lapar DJ, Laubach VE, Emaminia A, Crosby IK, Hajzus VA, Sharma AK, et al. Pretreatment strategy with adenosine A2A receptor agonist attenuates reperfusion injury in a preclinical porcine lung transplantation model. J Thorac Cardiovasc Surg. 2011;142:887–94.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Lee JC, Christie JD. Primary graft dysfunction. In: Vigneswaran W, Garrity ER, editors Lung transplantation. London: Informa healthcare; 2010. p. 237–48.Google Scholar
  74. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001;2:589–98.PubMedCrossRefGoogle Scholar
  75. Lindstedt S, Hlebowicz J, Koul B, Wierup P, Sjogren J, Gustafsson R, et al. Comparative outcome of double lung transplantation using conventional donor lungs and non-acceptable donor lungs reconditioned ex vivo. Interact Cardiovasc Thorac Surg. 2011;12:162–5.PubMedCrossRefGoogle Scholar
  76. Liu M, Tremblay L, Cassivi SD, Bai XH, Mourgeon E, Pierre AF, et al. Alterations of nitric oxide synthase expression and activity during rat lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2000;278:L1071–81.PubMedGoogle Scholar
  77. Lobo LJ, Aris RM, Schmitz J, Neuringer IP. Donor-specific antibodies are associated with antibody-mediated rejection, acute cellular rejection, bronchiolitis obliterans syndrome, and cystic fibrosis after lung transplantation. J Heart Lung Transplant. 2013;32:70–7.PubMedCrossRefGoogle Scholar
  78. Löckinger A, Schütte H, Walmrath D, Seeger W, Grimminger F. Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Transplantation. 2001;71:185–93.PubMedCrossRefGoogle Scholar
  79. Lopau K, Mark J, Schramm L, Heidbreder E, Wanner C. Hormonal changes in brain death and immune activation in the donor. Transpl Int. 2000;13 Suppl 1:S282–5.PubMedCrossRefGoogle Scholar
  80. Maccherini M, Keshavjee SH, Slutsky AS, Patterson GA, Edelson JD. The effect of low-potassium-dextran versus Euro-Collins solution for preservation of isolated type II pneumocytes. Transplantation. 1991;52:621–6.PubMedCrossRefGoogle Scholar
  81. Machuca TN, Hsin MK, Ott HC, Chen M, Hwang DM, Cypel M, et al. Injury-specific ex vivo treatment of the donor lung: pulmonary thrombolysis followed by successful lung transplantation. Am J Respir Crit Care Med. 2013;188:878–80.PubMedCrossRefGoogle Scholar
  82. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.PubMedCentralPubMedGoogle Scholar
  83. McRae K, de Perrot M, Fischer S, Waddell TK, Liu M, Keshavjee S. Detection of IL-10 in the exhaled breath condensate, plasma and tissue during ischemia-reperfusion injury in experimental lung transplantation. J Heart Lung Transplant. 2001;20:184.PubMedCrossRefGoogle Scholar
  84. Meers CM, Tsagkaropoulos S, Wauters S, Verbeken E, Vanaudenaerde B, Scheers H, et al. A model of ex vivo perfusion of porcine donor lungs injured by gastric aspiration: a step towards pretransplant reconditioning. J Surg Res. 2011;170:e159–67.PubMedCrossRefGoogle Scholar
  85. Minambres E, Coll E, Duerto J, Suberviola B, Mons R, Cifrian JM, et al. Effect of an intensive lung donor-management protocol on lung transplantation outcomes. J Heart Lung Transplant. 2014;33:178–84.PubMedCrossRefGoogle Scholar
  86. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Mizutani H, Minamoto K, Aoe M, Yamashita M, Date H, Andou A, et al. Expression of endothelin-1 and effects of an endothelin receptor antagonist, TAK-044, at reperfusion after cold preservation in a canine lung transplantation model. J Heart Lung Transplant. 1998;17:835–45.PubMedGoogle Scholar
  88. Moore TM, Khimenko P, Adkins WK, Miyasaka M, Taylor AE. Adhesion molecules contribute to ischemia and reperfusion-induced injury in the isolated rat lung. J Appl Physiol. 1995;78:2245–52.PubMedGoogle Scholar
  89. Motoyama H, Chen F, Ohsumi A, Hijiya K, Okita K, Nakajima D, et al. Protective effect of plasmin in marginal donor lungs in an ex vivo lung perfusion model. J Heart Lung Transplant. 2013;32:505–10.PubMedCrossRefGoogle Scholar
  90. Mühlfeld C, Müller K, Pallesen LP, Sandhaus T, Madershahian N, Richter J, et al. Impact of preservation solution on the extent of blood-air barrier damage and edema formation in experimental lung transplantation. Anat Rec. 2007;290:491–500.CrossRefGoogle Scholar
  91. Mühlfeld C, Schaefer IM, Becker L, Bussinger C, Vollroth M, Bosch A, et al. Pre-ischaemic exogenous surfactant reduces pulmonary injury in rat ischaemia/reperfusion. Eur Respir J. 2009;33:625–33.PubMedCrossRefGoogle Scholar
  92. Mühlfeld C, Becker L, Bussinger C, Vollroth M, Nagib R, Schaefer IM, et al. Exogenous surfactant in ischemia/reperfusion: Effects on endogenous surfactant pools. J Heart Lung Transplant. 2010;29:327–34.PubMedCrossRefGoogle Scholar
  93. Mulligan MS. Primary graft dysfunction following lung transplantation: Pathogenesis and impact on early and late outcome. In: Lynch JP, Ross DJ, editors Lung and heart-lung transplantation. Taylor & Francis; 2006. p. 437–63.Google Scholar
  94. Munshi L, Keshavjee S, Cypel M. Donor management and lung preservation for lung transplantation. Lancet Respir Med. 2013;1:318–28.PubMedCrossRefGoogle Scholar
  95. Naidu BV, Krishnadasan B, Farivar AS, Woolley SM, Thomas R, Van Rooijen N, et al. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2003;126:200–7.PubMedCrossRefGoogle Scholar
  96. Naka Y, Toda K, Kayano K, Oz MC, Pinsky DJ. Failure to express the P-selectin gene or P-selectin blockade confers early pulmonary protection after lung ischemia or transplantation. Proc Natl Acad Sci U S A. 1997;94:757–61.PubMedCentralPubMedCrossRefGoogle Scholar
  97. Ng CS, Wan S, Arifi AA, Yim AP. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today. 2006;36:205–14.PubMedCrossRefGoogle Scholar
  98. Ochs M. Stereological analysis of acute lung injury. Eur Respir Rev. 2006;15:115–21.CrossRefGoogle Scholar
  99. Ochs M. The closer we look the more we see? Quantitative microscopic analysis of the pulmonary surfactant system. Cell Physiol Biochem. 2010;25:27–40.PubMedCrossRefGoogle Scholar
  100. Ochs M, O’Brodovich H. The structural and physiologic basis of respiratory disease. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding RR, Ratjen F, editors. Kendig and Chernick's disorders of the respiratory tact in children. 8th ed. Philadelphia: Elsevier; 2012. p. 35–74.CrossRefGoogle Scholar
  101. Ochs M, Nenadic I, Fehrenbach A, Albes JM, Wahlers T, Richter J, et al. Ultrastructural alterations in intraalveolar surfactant subtypes after experimental ischemia and reperfusion. Am J Respir Crit Care Med. 1999;160:718–24.PubMedCrossRefGoogle Scholar
  102. Ochs M, Fehrenbach H, Nenadic I, Bando T, Fehrenbach A, Schepelmann D, et al. Preservation of intraalveolar surfactant in a rat lung ischaemia/reperfusion injury model. Eur Respir J. 2000;15:526–31.PubMedCrossRefGoogle Scholar
  103. Ochs M, Fehrenbach H, Richter J. Occurence of lipid bodies in canine type II pneumocytes during hypothermic lung ischemia. Anat Rec A Discov Mol Cell Evol Biol. 2004;277:287–97.PubMedCrossRefGoogle Scholar
  104. Oczenski W. Atmen—Atemhilfen. 8th ed. Stuttgart: Thieme; 2008.Google Scholar
  105. Ohsumi A, Chen F, Sakamoto J, Nakajima D, Kobayashi M, Bando T, et al. Protective effect of surfactant inhalation against warm ischemic injury in an isolated rat lung ventilation model. PLoS One. 2013;8:e72574.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Okada K, Fujita T, Minamoto K, Liao H, Naka Y, Pinsky DJ. Potentiation of endogenous fibrinolysis and rescue from lung ischemia/reperfusion injury in interleukin (IL)-10-reconstituted IL-10 null mice. J Biol Chem. 2000;275:21468–76.PubMedCrossRefGoogle Scholar
  107. Orens JB, Boehler A, de PM, Estenne M, Glanville AR, Keshavjee S, et al. A review of lung transplant donor acceptability criteria. J Heart Lung Transplant. 2003;22:1183–200.PubMedCrossRefGoogle Scholar
  108. Ovechkin AV, Lominadze D, Sedoris KC, Gozal E, Robinson TW, Roberts AM. Inhibition of inducible nitric oxide synthase attenuates platelet adhesion in subpleural arterioles caused by lung ischemia-reperfusion in rabbits. J Appl Physiol. 2005;99:2423–32.PubMedCrossRefGoogle Scholar
  109. Pakhale SS, Hadjiliadis D, Howell DN, Palmer SM, Gutierrez C, Waddell TK, et al. Upper lobe fibrosis: a novel manifestation of chronic allograft dysfunction in lung transplantation. J Heart Lung Transplant. 2005;24:1260–8.PubMedCrossRefGoogle Scholar
  110. Palace GP, Horgan MJ, Malik AB. Generation of 5-lipoxygenase metabolites following pulmonary reperfusion in isolated rabbit lungs. Prostaglandins. 1992;43:339–49.PubMedCrossRefGoogle Scholar
  111. Paries M, Boccheciampe N, Raux M, Riou B, Langeron O, Nicolas-Robin A. Benefit of a single recruitment maneuver after an apnea test for the diagnosis of brain death. Crit Care. 2012;16:R116.PubMedCentralPubMedCrossRefGoogle Scholar
  112. Parto S, Shafaghi S, Khoddami-Vishteh HR, Makki SM, Abbasidezfuli A, Daneshvar A, et al. Efficacy of recruitment maneuver for improving the brain dead marginal lungs to ideal. Transplant Proc. 2013;45:3531–3.PubMedCrossRefGoogle Scholar
  113. Pierre AF, Xavier AM, Liu M, Cassivi SD, Lindsay TF, Marsh HC, et al. Effect of complement inhibition with soluble complement receptor 1 on pig allotransplant lung function. Transplantation. 1998;66:723–32.PubMedCrossRefGoogle Scholar
  114. Quadri SM, Segall L, de PM, Han B, Edwards V, Jones N, et al. Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. Am J Transplant. 2005;5:292–9.PubMedCrossRefGoogle Scholar
  115. Rostron A, Dark JH. Donor management. In: Vigneswaran WT, Garrity ER, editors Lung transplantation. London: Informa healthcare; 2010. p. 115–24.Google Scholar
  116. Sato M. Chronic lung allograft dysfunction after lung transplantation: the moving target. Gen Thorac Cardiovasc Surg. 2013;61:67–78.PubMedCrossRefGoogle Scholar
  117. Sato K, Tomioka H, Shimizu T, Gonda T, Ota F, Sano C. Type II alveolar cells play roles in macrophage-mediated host innate resistance to pulmonary mycobacterial infections by producing proinflammatory cytokines. J Infect Dis. 2002;185:1139–47.PubMedCrossRefGoogle Scholar
  118. Sato M, Waddell TK, Wagnetz U, Roberts HC, Hwang DM, Haroon A, et al. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant. 2011;30:735–42.PubMedCrossRefGoogle Scholar
  119. Seeger W, Stöhr G, Wolf HR, Neuhof H. Alteration of surfactant function due to protein leakage: special interaction with fibrin monomer. J Appl Physiol. 1985;58:326–38.PubMedGoogle Scholar
  120. Shargall Y, Guenther G, Ahya VN, Ardehali A, Singhal A, Keshavjee S. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part VI: treatment. J Heart Lung Transplant. 2005;24:1489–500.PubMedCrossRefGoogle Scholar
  121. Sharma AK, Linden J, Kron IL, Laubach VE. Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation. Respir Res. 2009;10:58.PubMedCentralPubMedCrossRefGoogle Scholar
  122. Sharma AK, Laubach VE, Ramos SI, Zhao Y, Stukenborg G, Linden J, et al. Adenosine A2A receptor activation on CD4 + T lymphocytes and neutrophils attenuates lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2010;139:474–82.PubMedCentralPubMedCrossRefGoogle Scholar
  123. Shimizu N, Kita T, Aoe M, Nakata M, Miyai Y, Teramoto S. Changes in levels of arachidonic acid metabolites in blood and bronchoalveolar lavage fluid after warm ischemia-reperfusion of lung. Acta Med Okayama. 1991;45:417–22.PubMedGoogle Scholar
  124. Soccal PM, Gasche Y, Pache JC, Schneuwly O, Slosman DO, Morel DR, et al. Matrix metalloproteinases correlate with alveolar-capillary permeability alteration in lung ischemia-reperfusion injury. Transplantation. 2000;70:998–1005.PubMedCrossRefGoogle Scholar
  125. Sommer SP, Gohrbandt B, Fischer S, Hohlfeld JM, Warnecke G, Avsar M, et al. Glutathione improves the function of porcine pulmonary grafts stored for twenty-four hours in low-potassium dextran solution. J Thorac Cardiovasc Surg. 2005;130:864–9.PubMedCrossRefGoogle Scholar
  126. Sommer W, Tudorache I, Kuhn C, Avsar M, Salman J, Ius F, et al. C1-Esterase-Inhibitor for Primary Graft Dysfunction in Lung Transplantation. Transplantation. 2014;97:1185–91.PubMedCrossRefGoogle Scholar
  127. Stammberger U, Carboni GL, Hillinger S, Schneiter D, Weder W, Schmid RA. Combined treatment with endothelin- and PAF-antagonists reduces posttransplant lung ischemia/reperfusion injury. J Heart Lung Transplant. 1999;18:862–8.PubMedCrossRefGoogle Scholar
  128. Stammberger U, Gaspert A, Hillinger S, Vogt P, Odermatt B, Weder W, et al. Apoptosis induced by ischemia and reperfusion in experimental lung transplantation. Ann Thorac Surg. 2000;69:1532–6.PubMedCrossRefGoogle Scholar
  129. Steen S, Kimblad PO, Sjoberg T, Lindberg L, Ingemansson R, Massa G. Safe lung preservation for twenty-four hours with Perfadex. Ann Thorac Surg. 1994;57:450–7.PubMedCrossRefGoogle Scholar
  130. Steen S, Sjoberg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. The Lancet. 2001;357:825–9.CrossRefGoogle Scholar
  131. Steen S, Liao Q, Wierup PN, Bolys R, Pierre L, Sjoberg T. Transplantation of lungs from non-heart-beating donors after functional assessment ex vivo. Ann Thorac Surg. 2003;76:244–52.PubMedCrossRefGoogle Scholar
  132. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26:1229–42.PubMedCrossRefGoogle Scholar
  133. Strüber M, Wilhelmi M, Harringer W, Niedermeyer J, Anssar M, Kunsebeck A, et al. Flush perfusion with low potassium dextran solution improves early graft function in clinical lung transplantation. Eur J Cardiothorac Surg. 2001;19:190–4.PubMedCrossRefGoogle Scholar
  134. Strüber M, Hohlfeld JM, Kofidis T, Warnecke G, Niedermeyer J, Sommer SP, et al. Surfactant function in lung transplantation after 24 h of ischemia: advantage of retrograde flush perfusion for preservation. J Thorac Cardiovasc Surg. 2002;123:98–103.PubMedCrossRefGoogle Scholar
  135. Strüber M, Fischer S, Niedermeyer J, Warnecke G, Gohrbandt B, Gorler A, et al. Effects of exogenous surfactant instillation in clinical lung transplantation: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2007;133:1620–5.PubMedCrossRefGoogle Scholar
  136. Su M, Chi EY, Bishop MJ, Henderson WR Jr. Lung mast cells increase in number and degranulate during pulmonary artery occlusion/reperfusion injury in dogs. Am Rev Respir Dis. 1993;147:448–56.PubMedCrossRefGoogle Scholar
  137. Sunose Y, Takeyoshi I, Tsutsumi H, Kawata K, Tokumine M, Iwazaki S, et al. Effects of FK3311 on pulmonary ischemia-reperfusion injury in a canine model. J Surg Res. 2001;95:167–73.PubMedCrossRefGoogle Scholar
  138. Suzuki Y, Cantu E, Christie JD. Primary graft dysfunction. Semin Respir Crit Care Med. 2013;34:305–19.PubMedCentralPubMedCrossRefGoogle Scholar
  139. Takada M, Nadeau KC, Hancock WW, Mackenzie HS, Shaw GD, Waaga AM, et al. Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation. 1998;65:1533–42.PubMedCrossRefGoogle Scholar
  140. Tang PS, Mura M, Seth R, Liu M. Acute lung injury and cell death: how many ways can cells die? Am J Physiol Lung Cell Mol Physiol. 2008;294:L632–41.PubMedCrossRefGoogle Scholar
  141. Thabut G, Mal H, Cerrina J, Dartevelle P, Dromer C, Velly JF, et al. Graft ischemic time and outcome of lung transplantation: a multicenter analysis. Am J Respir Crit Care Med. 2005;171:786–91.PubMedCrossRefGoogle Scholar
  142. The International Society for Heart & Lung Transplantation. In: ISHLT transplant registry quarterly reports for lung. 2014. Accessed 14 May 2014.Google Scholar
  143. Van Cruchten S, Van den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol. 2002;31:214–23.PubMedCrossRefGoogle Scholar
  144. Van de Wauwer C, Neyrinck AP, Geudens N, Rega FR, Verleden GM, Verbeken E, et al. Retrograde flush following warm ischemia in the non-heart-beating donor results in superior graft performance at reperfusion. J Surg Res. 2009;154:118–25.PubMedCrossRefGoogle Scholar
  145. Van Putte BP, Kesecioglu J, Hendriks JM, Persy VP, van Marck E, van Schil PE, et al. Cellular infiltrates and injury evaluation in a rat model of warm pulmonary ischemia-reperfusion. Crit Care. 2005;9:R1–R8.PubMedCentralPubMedCrossRefGoogle Scholar
  146. Van Raemdonck D, Neyrinck A, Cypel M, Keshavjee S. Ex-vivo Lung Perfusion. Transpl Int. 2015;28:643–56.Google Scholar
  147. Vanderbilt JN, Mager EM, Allen L, Sawa T, Wiener-Kronish J, Gonzalez R, et al. CXC chemokines and their receptors are expressed in type II cells and upregulated following lung injury. Am J Respir Cell Mol Biol. 2003;29:661–8.PubMedCrossRefGoogle Scholar
  148. Veldhuizen RA, Marcou J, Yao LJ, McCaig L, Ito Y, Lewis JF. Alveolar surfactant aggregate conversion in ventilated normal and injured rabbits. Am J Physiol. 1996;270:L152–8.PubMedGoogle Scholar
  149. Verbrugge SJ, Lachmann B, Kesecioglu J. Lung protective ventilatory strategies in acute lung injury and acute respiratory distress syndrome: from experimental findings to clinical application. Clin Physiol Funct Imaging. 2007;27:67–90.PubMedCrossRefGoogle Scholar
  150. Wallinder A, Ricksten SE, Hansson C, Riise GC, Silverborn M, Liden H, et al. Transplantation of initially rejected donor lungs after ex vivo lung perfusion. J Thorac Cardiovasc Surg. 2012;144:1222–8.PubMedCrossRefGoogle Scholar
  151. Warnecke G, Strüber M, Fraud S, Hohlfeld JM, Haverich A. Combined exogenous surfactant and inhaled nitric oxide therapy for lung ischemia-reperfusion injury in minipigs. Transplantation. 2001;71:1238–44.PubMedCrossRefGoogle Scholar
  152. Weibel ER, Knight BW. A morphometric study on the thickness of the pulmonary air-blood barrier. J Cell Biol. 1964;21:367–96.PubMedCentralPubMedCrossRefGoogle Scholar
  153. Weibel ER, Hsia CC, Ochs M. How much is there really? Why stereology is essential in lung morphometry. J Appl Physiol. 2007;102:459–67.PubMedCrossRefGoogle Scholar
  154. Weiss ES, Champion HC, Williams JA, Baumgartner WA, Shah AS. Long-acting oral phosphodiesterase inhibition preconditions against reperfusion injury in an experimental lung transplantation model. J Thorac Cardiovasc Surg. 2009;137:1249–57.PubMedCrossRefGoogle Scholar
  155. Wierup P, Haraldsson A, Nilsson F, Pierre L, Schersten H, Silverborn M, et al. Ex vivo evaluation of nonacceptable donor lungs. Ann Thorac Surg. 2006;81:460–6.PubMedCrossRefGoogle Scholar
  156. Witt CA, Gaut JP, Yusen RD, Byers DE, Iuppa JA, Bennett BK, et al. Acute antibody-mediated rejection after lung transplantation. J Heart Lung Transplant. 2013;32:1034–40.PubMedCrossRefGoogle Scholar
  157. Wittwer T, Grote M, Oppelt P, Franke U, Schaefers HJ, Wahlers T. Impact of PAF antagonist BN 52021 (Ginkolide B) on post-ischemic graft function in clinical lung transplantation. J Heart Lung Transplant. 2001;20:358–63.PubMedCrossRefGoogle Scholar
  158. Woodrow JP, Shlobin OA, Barnett SD, Burton N, Nathan SD. Comparison of bronchiolitis obliterans syndrome to other forms of chronic lung allograft dysfunction after lung transplantation. J Heart Lung Transplant. 2010;29:1159–64.PubMedCrossRefGoogle Scholar
  159. Yang Z, Sharma AK, Linden J, Kron IL, Laubach VE. CD4+ T lymphocytes mediate acute pulmonary ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2009;137:695–702.PubMedCentralPubMedCrossRefGoogle Scholar
  160. Yeung JC, Keshavjee S. Overview of clinical lung transplantation. Cold Spring Harb Perspect Med. 2014;4:a015628.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: thirtieth adult lung and heart-lung transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32:965–78.PubMedCrossRefGoogle Scholar
  162. Zhang J, Chen F, Zhao X, Aoyama A, Okamoto T, Fujinaga T, et al. Nebulized phosphodiesterase III inhibitor during warm ischemia attenuates pulmonary ischemia-reperfusion injury. J Heart Lung Transplant. 2009;28:79–84.PubMedCrossRefGoogle Scholar
  163. Zhao M, Fernandez LG, Doctor A, Sharma AK, Zarbock A, Tribble CG, et al. Alveolar macrophage activation is a key initiation signal for acute lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol. 2006;291:L1018–26.PubMedCrossRefGoogle Scholar
  164. Zhao Y, Sharma AK, Lapar DJ, Kron IL, Ailawadi G, Liu Y, et al. Depletion of tissue plasminogen activator attenuates lung ischemia-reperfusion injury via inhibition of neutrophil extravasation. Am J Physiol Lung Cell Mol Physiol. 2011;300:L718–29.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Functional and Applied AnatomyHannover Medical SchoolHannoverGermany

Personalised recommendations