Equations of Motion in Relativistic Gravity pp 759-781

Part of the Fundamental Theories of Physics book series (FTPH, volume 179)

| Cite as

The Galactic Center Black Hole Laboratory

  • A. Eckart
  • S. Britzen
  • M. Valencia-S.
  • C. Straubmeier
  • J. A. Zensus
  • V. Karas
  • D. Kunneriath
  • A. Alberdi
  • N. Sabha
  • R. Schödel
  • D. Puetzfeld
Chapter

Abstract

The super-massive 4 million solar mass black hole Sagittarius A* (SgrA*) shows flare emission from the millimeter to the X-ray domain. A detailed analysis of the infrared light curves allows us to address the accretion phenomenon in a statistical way. The analysis shows that the near-infrared flare amplitudes are dominated by a single state power law, with the low states in SgrA* limited by confusion through the unresolved stellar background. There are several dusty objects in the immediate vicinity of SgrA*. The source G2/DSO is one of them. Its nature is unclear. It may be comparable to similar stellar dusty sources in the region or may consist predominantly of gas and dust. In this case a particularly enhanced accretion activity onto SgrA* may be expected in the near future. Here the interpretation of recent data and ongoing observations are discussed.

References

  1. 1.
    M. Zamaninasab et al., A&A 510, 3 (2010)ADSGoogle Scholar
  2. 2.
    M. Zamaninasab et al., MNRAS 413, 322 (2011)ADSGoogle Scholar
  3. 3.
    M. Zamaninasab et al., ASPC 439, 323 (2011)ADSGoogle Scholar
  4. 4.
    A. Eckart et al., A&A 455, 1 (2006)ADSGoogle Scholar
  5. 5.
    A.E. Broderick, A. Loeb, MNRAS 363, 353 (2005)ADSGoogle Scholar
  6. 6.
    T. Yoshikawa, S. Nishiyama, ApJ 778, 92 (2013)ADSGoogle Scholar
  7. 7.
    S. Gillessen et al., Nature 481, 51 (2012)ADSGoogle Scholar
  8. 8.
    K. Phifer et al., ApJ 773, L13 (2013)ADSGoogle Scholar
  9. 9.
    F. Eisenhauer, IAUS 261, 269 (2010)ADSGoogle Scholar
  10. 10.
    A. Ghez, Astro2010: the astronomy and astrophysics decadal survey. Science White Papers 89 (2009)Google Scholar
  11. 11.
    G. Witzel et al., ApJS 203, 18 (2012)ADSGoogle Scholar
  12. 12.
    A. Eckart et al., A&A 537, 52 (2012)ADSGoogle Scholar
  13. 13.
    A. Eckart et al., SPIE 8445, 1 (2012)Google Scholar
  14. 14.
    F.K. Baganoff et al., ApJ 591, 891 (2012)ADSGoogle Scholar
  15. 15.
    F.K. Baganoff et al., Nature 413, 45 (2001)ADSGoogle Scholar
  16. 16.
    D. Porquet et al., A&A 407, L17 (2003)ADSGoogle Scholar
  17. 17.
    D. Porquet et al., A&A 488, 549 (2008)ADSGoogle Scholar
  18. 18.
    M.A. Nowak et al., ApJ 759, 95 (2012)ADSGoogle Scholar
  19. 19.
    M.A. Nowak et al., ApJ 786, 46 (2014)Google Scholar
  20. 20.
    K. Mori et al., ApJ 770, L23 (2013)ADSGoogle Scholar
  21. 21.
    R.M. Shannon, S. Johnston, MNRAS 435, L29 (2013)ADSGoogle Scholar
  22. 22.
    N. Rea et al., ApJ 775, L34 (2013)ADSGoogle Scholar
  23. 23.
    G.C. Bower, H. Falcke, D.C. Backer, ApJ 523, L29 (1999)ADSGoogle Scholar
  24. 24.
    G.C. Bower et al., ApJ 521, 582 (1999)ADSGoogle Scholar
  25. 25.
    G.C. Bower, Ap&SS 288, 69 (2003)ADSGoogle Scholar
  26. 26.
    J.P. Macquart, ApJ 646, L111 (2006)ADSGoogle Scholar
  27. 27.
    A. Eckart et al., A&A 492, 337 (2008)ADSGoogle Scholar
  28. 28.
    F. Yusef-Zadeh, ApJ 650, 189 (2006)ADSGoogle Scholar
  29. 29.
    A. Eckart et al., A&A 450, 535 (2006)ADSGoogle Scholar
  30. 30.
    J. Dexter, PCh. Fragile, MNRAS 432, 2252 (2013)ADSGoogle Scholar
  31. 31.
    J. Dexter, B. Kelly, G.C. Bower, D.P. Marrone, MNRAS 442, 2797 (2014)ADSGoogle Scholar
  32. 32.
    A.P. Marscher, ApJ 264, 296 (1983)ADSGoogle Scholar
  33. 33.
    R.J. Gould, A&A 76, 306 (1979)ADSGoogle Scholar
  34. 34.
    J. Dexter et al., ApJ 717, 1092 (2010)ADSGoogle Scholar
  35. 35.
    M. Moscibrodzka, H. Falcke, A&A 559, L3 (2013)ADSGoogle Scholar
  36. 36.
    A. Eckart et al., A&A 479, 625 (2008)ADSGoogle Scholar
  37. 37.
    F. Yuan, Z.-Q. Shen, L. Huang, ApJ 642, L45 (2006)ADSGoogle Scholar
  38. 38.
    R. Narayan et al., ApJ 492, 554 (1998)ADSGoogle Scholar
  39. 39.
    H. Falcke, S. Markoff, A&A 362, 113 (2000)ADSGoogle Scholar
  40. 40.
    D.P. Marrone et al., ApJ 682, 373 (2008)ADSGoogle Scholar
  41. 41.
    M. Valencia-S et al., JPhCS 372, 2073 (2012)Google Scholar
  42. 42.
    V. Karas, M. Dovciak, M. Zamaninasab, A. Eckart, ASPC 439, 344 (2011)ADSGoogle Scholar
  43. 43.
    K. Akiyama, R. Takahashi, M. Honma, T. Oyama, H. Kobayashi, PASJ 65, 91 (2013)ADSGoogle Scholar
  44. 44.
    K. Akiyama et al., (2013). arXiv:1311.5852 [astro-ph.GA]
  45. 45.
    A. Eckart et al., A&A 551, 18 (2013)ADSGoogle Scholar
  46. 46.
    A. Eckart et al., (2013). arXiv:1311.2743 [astro-ph.GA]
  47. 47.
    A. Eckart et al., (2013). arXiv:1311.2753 [astro-ph.GA]
  48. 48.
    B. Jalali, I. Pelupessy, A. Eckart, (2013). arXiv:1311.4881 [astro-ph.GA]
  49. 49.
    L. Meyer et al., (2013). arXiv:1312.1715 [astro-ph.GA]
  50. 50.
    C. J. Chandler, L.O. Sjouwerman. The Astronomer’s Telegram, No. 5727 and related ones (2014)Google Scholar
  51. 51.
    R. Narayan, F. Özel, L. Sironi, ApJ 757, L20 (2012)ADSGoogle Scholar
  52. 52.
    P. Crumley, P. Kumar, MNRAS 436, 1955 (2013)ADSGoogle Scholar
  53. 53.
    A. Sadowski et al., MNRAS 432, 478 (2013)ADSGoogle Scholar
  54. 54.
    F. Yusef-Zadeh, M. Wardle, ApJ 770, L21 (2013)ADSGoogle Scholar
  55. 55.
    F. Yusef-Zadeh et al., ApJ 767, L32 (2013)ADSGoogle Scholar
  56. 56.
    R.V. Shcherbakov, ApJ 783, 31 (2014)ADSGoogle Scholar
  57. 57.
    H. Falcke, S.B. Markoff, Class. Quantum Gravity 30, 244003 (2013)ADSGoogle Scholar
  58. 58.
    Th. Boller, A. Müller, Exciting Interdisciplinary Physics. FIAS Interdisciplinary Science Series (Springer International Publishing, Switzerland, 2013), p. 293. ISBN 978-3-319-00046-6Google Scholar
  59. 59.
    A.E. Broderick, T. Johannsen, A. Loeb, D. Psaltis, ApJ 784, 7 (2014)ADSGoogle Scholar
  60. 60.
    V.L. Fish et al., AAS, 22344304 (2014)Google Scholar
  61. 61.
    Z.-Q. Shen, F. Gao, L. Huang, ApJ 745, L20 (2012)Google Scholar
  62. 62.
    A.E. Broderick et al., ApJ 738, 38 (2011)ADSGoogle Scholar
  63. 63.
    A.E. Broderick et al., ApJ 735, 110 (2011)ADSGoogle Scholar
  64. 64.
    V.L. Fish et al., ApJ 727, L36 (2011)ADSGoogle Scholar
  65. 65.
    R.-S. Lu et al., A&A 525, 76 (2011)ADSGoogle Scholar
  66. 66.
    L. Huang et al., MNRAS 379, 833 (2007)ADSGoogle Scholar
  67. 67.
    V. Karas, O. Kopacek, D. Kunneriath, Class. Quantum Gravity 29, 035010 (2012)ADSMathSciNetGoogle Scholar
  68. 68.
    V. Karas, O. Kopacek, D. Kunneriath, Int. J. Astron. Astrophys. 3, 18 (2013)Google Scholar
  69. 69.
    V.S. Morozova, L. Rezzolla, B.J. Ahmedov, Phys. Rev. D 89, 104030 (2014)ADSGoogle Scholar
  70. 70.
    S. Koide, K. Arai, ApJ 682, 1124 (2008)ADSGoogle Scholar
  71. 71.
    J. Frank, M.J. Rees, MNRAS 176, 633 (1976)ADSGoogle Scholar
  72. 72.
    A.M. Ghez et al., The Astronomer’s Telegram. No. 6110 (2014)Google Scholar
  73. 73.
    L. Meyer et al. AAS Meeting No. 223, No. 108.07 (2014)Google Scholar
  74. 74.
    N. Scoville, A. Burkert, ApJ 768, 108 (2013)ADSGoogle Scholar
  75. 75.
    A. Ballone et al., ApJ 776, 13 (2013)ADSGoogle Scholar
  76. 76.
    J.D. Monnier, R. Millan-Gabet, ApJ 579, 694 (2002)ADSGoogle Scholar
  77. 77.
    A. Burkert et al., ApJ 750, 58 (2012)ADSGoogle Scholar
  78. 78.
    M. Schartmann et al., ApJ 755, 155 (2012)ADSGoogle Scholar
  79. 79.
    M. Zajacek, V. Karas, A. Eckart, A&A 565, A17 (2014)ADSGoogle Scholar
  80. 80.
    R.V. Shcherbakov, F.K. Baganoff, ApJ 716, 504 (2010)ADSGoogle Scholar
  81. 81.
    K. Muzic et al., A&A 521, 13 (2010)ADSGoogle Scholar
  82. 82.
    Rauch et al., A&A 551A, 35R (2013)Google Scholar
  83. 83.
    A. Eckart, R. Genzel, MNRAS 284, 576 (1997)ADSGoogle Scholar
  84. 84.
    N. Sabha et al., A&A 545, 70 (2012)ADSGoogle Scholar
  85. 85.
    S. Zucker et al., ApJ 639, L21 (2006)ADSGoogle Scholar
  86. 86.
    S. Gillessen et al., ApJ 707, L114 (2009)ADSGoogle Scholar
  87. 87.
    F. Eisenhauer et al., ApJ 597, L121 (2003)ADSGoogle Scholar
  88. 88.
    G.F. Rubilar, A. Eckart, A&A 374, 95 (2001)ADSGoogle Scholar
  89. 89.
    D. Merritt, Dynamics and Evolution of Galactic Nuclei (Princeton University Press, Princeton, 2012)Google Scholar
  90. 90.
    S. Gillessen et al., ApJ 692, 1075 (2009)ADSGoogle Scholar
  91. 91.
    N. Mouawad et al., ANS 324, 315 (2003)ADSGoogle Scholar
  92. 92.
    N. Mouawad et al., AN 326, 83 (2005)ADSGoogle Scholar
  93. 93.
    L. Subr, V. Karas, J.-M. Hure, MNRAS 354, 1177 (2004)ADSGoogle Scholar
  94. 94.
    K.P. Rauch, S. Tremaine, New A 1, 149 (1996)ADSGoogle Scholar
  95. 95.
    C. Hopman, T. Alexander, ApJ 645, 1152 (2006)ADSGoogle Scholar
  96. 96.
    E. Eilon, G. Kupi, T. Alexander, ApJ 698, 641 (2009)ADSGoogle Scholar
  97. 97.
    L. Subr, V. Karas, A&A 433, 405 (2005)ADSGoogle Scholar
  98. 98.
    P. Chang, MNRAS 393, 224f (2009)ADSGoogle Scholar
  99. 99.
    X. Chen, P. Amaro-Seoane, (2014) arXiv:1401.6456 [astro-ph.GA]
  100. 100.
    F. Antonini, D. Merritt, ApJ 763, L10 (2013)ADSGoogle Scholar
  101. 101.
    D. Merritt et al., Phys. Rev. D 84, 044024 (2011)ADSGoogle Scholar
  102. 102.
    D. Merritt et al., Phys. Rev. D 81, 062002 (2010)ADSGoogle Scholar
  103. 103.
    C.M. Will, ApJ 674, L25 (2008)ADSGoogle Scholar
  104. 104.
    M.B. Davies et al., ASPC 439, 212 (2011)ADSGoogle Scholar
  105. 105.
    R.P. Church et al., PASA 26, 92 (2009)ADSGoogle Scholar
  106. 106.
    J. Dale et al., MNRAS 393, 1016 (2009)ADSGoogle Scholar
  107. 107.
    H.B. Perets, A. Mastrobuono-Battisti, (2014) arXiv:1401.1824 [astro-ph.GA]
  108. 108.
    A. Mastrobuono-Battisti, H.B. Perets, ApJ 779, 85 (2013)ADSGoogle Scholar
  109. 109.
    J. Haas, L. Subr, J. Phys. Conf. Ser. 372, 2059 (2012)ADSGoogle Scholar
  110. 110.
    L. Subr, J. Haas, J. Phys. Conf. Ser. 372, 2018 (2012)Google Scholar
  111. 111.
    J. Haas, L. Subr, D. Vokrouhlicky, MNRAS 416, 1023 (2011)ADSGoogle Scholar
  112. 112.
    A. Feldmeier, N. Lützgendorf, N. Neumayer, A&A 554, 63 (2013)ADSGoogle Scholar
  113. 113.
    D. Psaltis, ApJ 759, 130 (2012)ADSGoogle Scholar
  114. 114.
    L.G. Spitler et al., ApJ 780, L3 (2014)ADSGoogle Scholar
  115. 115.
    K.J. Lee et al., The Astronomer’s Telegram. No. 5064 (2013)Google Scholar
  116. 116.
    R.P. Eatough, H. Falcke, R. Karuppusamy, Nature 501, 391 (2013)ADSGoogle Scholar
  117. 117.
    R.P. Eatough et al., The Astronomer’s Telegram. No. 5027 (2013)Google Scholar
  118. 118.
    F. Yusef-Zadeh et al., ApJ 702, 178 (2009)ADSGoogle Scholar
  119. 119.
    F. Yusef-Zadeh et al., ApJ 725, 1429 (2010)ADSGoogle Scholar
  120. 120.
    S. Nayakshin, J. Cuadra, V. Springel, MNRAS 379, 21 (2007)ADSGoogle Scholar
  121. 121.
    B. Czerny et al., A&A 555, A97 (2013)ADSGoogle Scholar
  122. 122.
    M. Su, T.R. Slatyer, D.P. Finkbeiner, ApJ 724, 1044 (2010)ADSGoogle Scholar
  123. 123.
    K. Zubovas, S. Nayakshin, MNRAS 424, 666 (2012)ADSGoogle Scholar
  124. 124.
    J. Bland-Hawthorn et al., ApJ 778, 58 (2013)ADSGoogle Scholar
  125. 125.
    R.M. Crocker, MNRAS 423, 3512 (2012)ADSGoogle Scholar
  126. 126.
    R.M. Crocker, F. Aharonian, Phys. Rev. Lett. 106, 1102 (2011)Google Scholar
  127. 127.
    R.M. Crocker et al., MNRAS 411, L11 (2011)ADSGoogle Scholar
  128. 128.
    S. Garcia-Burillo, F. Combes, J. Phys. Conf. Ser. 372, 2050 (2012)ADSGoogle Scholar
  129. 129.
    S. Garcia-Burillo et al., A&A 539, 8 (2012)ADSGoogle Scholar
  130. 130.
    I. Marquez, J. Masegosa, RMxAC 32, 150 (2008)ADSGoogle Scholar
  131. 131.
    S. Garcia-Burillo et al., A&A 407, 485 (2003)ADSGoogle Scholar
  132. 132.
    M. Krips et al., A&A 464, 553 (2007)ADSGoogle Scholar
  133. 133.
    L. Moser et al., (2013) arXiv:1309.6921 [astro-ph.CO]
  134. 134.
    C.G. Mundell et al., ApJ 583, 192 (2003)ADSGoogle Scholar
  135. 135.
    C.G. Mundell et al., ApJ 614, 648 (2004)ADSGoogle Scholar
  136. 136.
    C.G. Mundell et al., New Astron. Rev. 51, 34 (2007)ADSGoogle Scholar
  137. 137.
    C.G. Mundell et al., ApJ 703, 802 (2009)ADSGoogle Scholar
  138. 138.
    F. Combes et al., A&A 565, A97 (2014)ADSGoogle Scholar
  139. 139.
    T. Heckman, P. Best, Annu. Rev. Astron. Astrophys. 52, 589 (2014)ADSGoogle Scholar
  140. 140.
    P. Soffitta et al., SPIE 8443, 1 (2012)Google Scholar
  141. 141.
    P. Soffitta et al., ExA 36, 523 (2013)ADSGoogle Scholar
  142. 142.
    J. Dexter et al., J. Phys. Conf. Ser. 372, 012023 (2012)ADSGoogle Scholar
  143. 143.
    F. Aharonian et al., Pathway to the square kilometer array, The German White Paper (2013)Google Scholar
  144. 144.
    C. Straubmeier et al., SPIE 8445, 2 (2012)Google Scholar
  145. 145.
    F. Eisenhauer et al., Msngr 143, 16 (2011)ADSGoogle Scholar
  146. 146.
    A. Eckart et al., SPIE 7734, 27 (2010)ADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • A. Eckart
    • 1
    • 2
  • S. Britzen
    • 2
  • M. Valencia-S.
    • 1
  • C. Straubmeier
    • 1
  • J. A. Zensus
    • 1
    • 2
  • V. Karas
    • 3
  • D. Kunneriath
    • 3
  • A. Alberdi
    • 4
  • N. Sabha
    • 1
  • R. Schödel
    • 4
  • D. Puetzfeld
    • 5
  1. 1.I. Physikalisches InstitutUniversität zu KölnCologneGermany
  2. 2.Max-Planck-Institut für RadioastronomieBonnGermany
  3. 3.Astronomical Institute, Academy of SciencesPragueCzech Republic
  4. 4.Instituto de Astrofísica de Andalucía (CSIC)Glorieta de la Astronomá s/nGranadaSpain
  5. 5.ZARMUniversity of BremenBremenGermany

Personalised recommendations