Equations of Motion in an Expanding Universe

Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 179)

Abstract

We make use of an effective field-theoretical approach to derive post-Newtonian equations of motion of hydrodynamical inhomogeneities in cosmology. The matter Lagrangian for the perturbed cosmological model includes dark matter, dark energy, and ordinary baryonic matter. The Lagrangian is expanded in an asymptotic Taylor series around a Friedmann-Lemeître-Robertson-Walker background. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the expansion series is gauge-invariant and all of them together form a basis for the successive post-Newtonian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Newtonian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background metric. Temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large-scale inhomogeneities of matter as those generated by the primordial cosmological perturbations in these two components with \(\delta \rho /\rho \le 1\). The small scale inhomogeneities are generated by the baryonic matter which is considered as a bare perturbation of the background gravitational field, dark matter and energy. Mathematically, the large scale structure inhomogeneities are given by the homogeneous solution of the post-Newtonian equations while the small scale inhomogeneities are described by a particular solution of these equations with the stress-energy tensor of the baryonic matter that admits \(\delta \rho /\rho \gg 1\). We explicitly work out the field equations of the first post-Newtonian approximation in cosmology and derive the post-Newtonian equations of motion of the large and small scale inhomogeneities which generalize the covariant law of conservation of stress-energy-momentum tensor of matter in asymptotically-flat spacetime.

Notes

Acknowledgments

Sergei Kopeikin thanks the Center of Applied Space Technology and Microgravity (ZARM) of the University of Bremen for providing partial financial support for travel and Physikzentrum at Bad Honnef (Germany) for hospitality and accommodation. The work of Sergei Kopeikin has been supported by the grant 14-27-00068 of the Russian Scientific foundation.

References

  1. 1.
    O.V. Verkhodanov, A.G. Doroshkevich, Advances in Machine Learning and Data Mining for Astronomy, chapter Cosmic Microwave Background Mapping (CRC Press, Taylor & Francis Group, Boca Raton, 2012), pp. 133–159Google Scholar
  2. 2.
    J. Peacock, Encyclopedia of Astronomy and Astrophysics, chapter Cosmology: Standard Model (2002)Google Scholar
  3. 3.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005), p. 442CrossRefMATHGoogle Scholar
  4. 4.
    S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)MATHGoogle Scholar
  5. 5.
    D.S. Gorbunov, V.A. Rubakov, Introduction to the Theory of the Early Universe (World Scientific Publishing Company, Singapore, Hackensack, 2011)CrossRefGoogle Scholar
  6. 6.
    M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M.S. Vogeley, A. Berlind, T. Budavari, A. Connolly, D.J. Eisenstein, D. Finkbeiner, J.A. Frieman, J.E. Gunn, L. Hui, B. Jain, D. Johnston, S. Kent, H. Lin, R. Nakajima, R.C. Nichol, J.P. Ostriker, A. Pope, R. Scranton, U. Seljak, R.K. Sheth, A. Stebbins, A.S. Szalay, I. Szapudi, Y. Xu, J. Annis, J. Brinkmann, S. Burles, F.J. Castander, I. Csabai, J. Loveday, M. Doi, M. Fukugita, B. Gillespie, G. Hennessy, D.W. Hogg, Ž. Ivezić, G.R. Knapp, D.Q. Lamb, B.C. Lee, R.H. Lupton, T.A. McKay, P. Kunszt, J.A. Munn, L. O’Connell, J. Peoples, J.R. Pier, M. Richmond, C. Rockosi, D.P. Schneider, C. Stoughton, D.L. Tucker, D.E. vanden Berk, B. Yanny, D.G. York, Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69(10), 103501 (2004)Google Scholar
  7. 7.
    Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Planck Banday et al., Planck 2013 results. XVI. Cosmological parameters, ArXiv e-prints, March 2013Google Scholar
  8. 8.
    Planck Collaboration, P.A.R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A.J. Planck Banday et al., Planck 2013 results. XXIV. Constraints on primordial non-gaussianity, ArXiv e-prints, March 2013Google Scholar
  9. 9.
    J.-L. Lehners, P.J. Steinhardt, Planck 2013 results support the cyclic universe. Phys. Rev. D 87(12), 123533 (2013)CrossRefADSGoogle Scholar
  10. 10.
    A.R. Liddle, D.H. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)CrossRefGoogle Scholar
  11. 11.
    A. Krasiński, C. Hellaby, Structure formation in the Lemaître-Tolman model. Phys. Rev. D 65(2), 023501 (2002)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    A. Krasiński, C. Hellaby, Formation of a galaxy with a central black hole in the Lemaître-Tolman model. Phys. Rev. D 69(4), 043502 (2004)CrossRefADSGoogle Scholar
  13. 13.
    P. Jacewicz, A. Krasiński, Formation of Gyrs old black holes in the centers of galaxies within the Lemaître-Tolman model. Gen. Relativ. Gravit. 44, 81–105 (2012)CrossRefADSMATHGoogle Scholar
  14. 14.
    V.A. Fock, The Theory of Space, Time and Gravitation (Pergamon Press, Oxford, 1964)Google Scholar
  15. 15.
    A. Papapetrou, Equations of motion in general relativity. Proc. Phys. Soc. A 64, 57–75 (1951)CrossRefADSMATHMathSciNetGoogle Scholar
  16. 16.
    S. Chandrasekhar, Y. Nutku, The second post-Newtonian equations of hydrodynamics in general relativity. Astrophys. J. 158, 55 (1969)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. Chandrasekhar, F.P. Esposito, The 2\(\frac{1}{2}\)-post-Newtonian equations of hydrodynamics and radiation reaction in general relativity. Astrophys. J. 160, 153 (1970)CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    J.L. Anderson, T.C. Decanio, Equations of hydrodynamics in general relativity in the slow motion approximation. Gen. Relativ. Gravit. 6, 197–237 (1975)CrossRefADSMATHGoogle Scholar
  19. 19.
    N. Spyrou, Relativistic celestial mechanics of binary stars. Gen. Relativ. Gravit. 13, 473–485 (1981)CrossRefADSMATHMathSciNetGoogle Scholar
  20. 20.
    S.M. Kopeikin, General relativistic equations of binary motion for extended bodies with conservative corrections and radiation damping. Sov. Astron. 29, 516–524 (1985)ADSGoogle Scholar
  21. 21.
    R.A. Breuer, E. Rudolph, The force law for the dynamic two-body problem in the second post-Newtonian approximation of general relativity. Gen. Relativ. Gravit. 14, 181–211 (1982)CrossRefADSMATHMathSciNetGoogle Scholar
  22. 22.
    R.A. Breuer, E. Rudolph, Radiation reaction and energy loss in the post-Newtonian approximation of general relativity. Gen. Relativ. Gravit. 13, 777–793 (1981)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    S.T. Shapiro, A.P. Lightman, Rapidly rotating, post-Newtonian neutron stars. Astrophys. J. 207, 263–278 (1976)CrossRefADSGoogle Scholar
  24. 24.
    I. Ciufolini, R. Ruffini, Equilibrium configurations of neutron stars and the parametrized post-Newtonian metric theories of gravitation. Astrophys. J. 275, 867–877 (1983)CrossRefADSGoogle Scholar
  25. 25.
    S.L. Shapiro, S. Zane, Bar mode instability in relativistic rotating stars: A post-Newtonian treatment. Astrophys. J. Suppl. 117, 531 (1998)CrossRefADSGoogle Scholar
  26. 26.
    M. Takada, T. Futamase, A post-Newtonian Lagrangian perturbation approach to large-scale structure formation. Mon. Not. R. Astron. Soc. 306, 64–88 (1999)CrossRefADSGoogle Scholar
  27. 27.
    W. Petry, Cosmological post-Newtonian approximation in flat space-time theory of gravitation. Astrophys. Space Sci. 272(4), 353–368 (2000)CrossRefADSMATHMathSciNetGoogle Scholar
  28. 28.
    P. Szekeres, T. Rainsford, Post-newtonian cosmology. Gen. Relativ. Gravit. 32, 479–490 (2000)CrossRefADSMATHMathSciNetGoogle Scholar
  29. 29.
    J.-C. Hwang, H. Noh, D. Puetzfeld, Cosmological non-linear hydrodynamics with post-Newtonian corrections. J. Cosmol. Astropart. Phys. 3, 10 (2008)CrossRefADSGoogle Scholar
  30. 30.
    T.A. Oliynyk, Cosmological post-Newtonian expansions to arbitrary order. Commun. Math. Phys. 295, 431–463 (2010)CrossRefADSMATHMathSciNetGoogle Scholar
  31. 31.
    T.A. Oliynyk, The fast Newtonian limit for perfect fluids. Adv. Theor. Math. Phys. 16(2), 359–391 (2012)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    S.M. Kopeikin, The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment. Class. Quantum Gravity 21, 3251–3286 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  33. 33.
    J.L. Anderson, R.E. Kates, L.S. Kegeles, R.G. Madonna, Divergent integrals of post-Newtonian gravity: nonanalytic terms in the near-zone expansion of a gravitationally radiating system found by matching. Phys. Rev. D 25, 2038–2048 (1982)CrossRefADSGoogle Scholar
  34. 34.
    L. Blanchet, Post-Newtonian gravitational radiation, in Einstein’s Field Equations and Their Physical Implications. Lecture Notes in Physics, vol. 540, ed. by B.G. Schmidt (Springer, Berlin, 2000), p. 225Google Scholar
  35. 35.
    G. Schäfer, Post-Newtonian methods: analytic results on the binary problem. In: L. Blanchet, A. Spallicci and B. Whiting (Eds.), Mass and Motion in General Relativity. Fundam. Theor. Phys. 162, 167–210 (2011)Google Scholar
  36. 36.
    T. Buchert, Dark energy from structure: a status report. Gen. Relativ. Gravit. 40, 467–527 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  37. 37.
    E.W. Kolb, V. Marra, S. Matarrese, Description of our cosmological spacetime as a perturbed conformal Newtonian metric and implications for the backreaction proposal for the accelerating universe. Phys. Rev. D 78(10), 103002 (2008)CrossRefADSGoogle Scholar
  38. 38.
    E.W. Kolb, V. Marra, S. Matarrese, Cosmological background solutions and cosmological backreactions. Gen. Relat. Gravit. 42, 1399–1412 (2010)CrossRefADSMATHMathSciNetGoogle Scholar
  39. 39.
    Stephen R. Green, Robert M. Wald, New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D 83, 084020 (2011)CrossRefADSGoogle Scholar
  40. 40.
    S.R. Green, R.M. Wald, Newtonian and relativistic cosmologies. Phys. Rev. D 85(6), 063512 (2012)CrossRefADSGoogle Scholar
  41. 41.
    A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)CrossRefADSGoogle Scholar
  42. 42.
    S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch and Supernova Cosmology Project, Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)Google Scholar
  43. 43.
    R. Zalaletdinov, The averaging problem in cosmology and macroscopic gravity. Int. J. Mod. Phys. A 23, 1173–1181 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  44. 44.
    T. Futamase, Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681–689 (1996)CrossRefADSGoogle Scholar
  45. 45.
    C. Clarkson, G. Ellis, J. Larena, O. Umeh, Does the growth of structure affect our dynamical models of the universe? The averaging, backreaction and fitting problems in cosmology. Rep. Prog. Phys. 74, 112901 (2011)CrossRefMathSciNetGoogle Scholar
  46. 46.
    S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Weinheim, 2011)CrossRefMATHGoogle Scholar
  47. 47.
    G.F.R. Ellis, Inhomogeneity effects in cosmology. Class. Quantum Gravity 28(16), 164001 (2011)CrossRefADSGoogle Scholar
  48. 48.
    S.M. Kopeikin, A.N. Petrov, Post-Newtonian celestial dynamics in cosmology: field equations. Phys. Rev. D 87(4), 044029 (2013)CrossRefADSGoogle Scholar
  49. 49.
    E.M. Lifshitz, I.M. Khalatnikov, Special issue: problems of relativistic cosmology. Sov. Phys. Uspekhi 6, 495–522 (1964)CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    E. Lifshitz, On the gravitational stability of the expanding universe. JETP 10, 116–129 (1946). http://www.citebase.org/abstract?id=oai
  51. 51.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  52. 52.
    J.M. Bardeen, Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882–1905 (1980)CrossRefADSMathSciNetGoogle Scholar
  53. 53.
    H. Kodama, M. Sasaki, Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1 (1984)CrossRefADSGoogle Scholar
  54. 54.
    A. Ishibashi, R.M. Wald, Can the acceleration of our universe be explained by the effects of inhomogeneities? Class. Quantum Gravity 23, 235–250 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  55. 55.
    R. Baierlein, Representing a vector field: Helmholtz’s theorem derived from a Fourier identity. Am. J. Phys. 63, 180–182 (1995)CrossRefADSGoogle Scholar
  56. 56.
    V.A. Brumberg, Essential Relativistic Celestial Mechanics (Adam Hilger, Bristol, 1991), p. 271MATHGoogle Scholar
  57. 57.
    G.F.R. Ellis, M. Bruni, Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804–1818 (1989)CrossRefADSMathSciNetGoogle Scholar
  58. 58.
    G.F.R. Ellis, J. Hwang, M. Bruni, Covariant and gauge-independent perfect-fluid Robertson-Walker perturbations. Phys. Rev. D 40, 1819–1826 (1989)CrossRefADSMathSciNetGoogle Scholar
  59. 59.
    C.G. Tsagas, A. Challinor, R. Maartens, Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61–147 (2008)CrossRefADSMathSciNetGoogle Scholar
  60. 60.
    S. Shandarin, S. Habib, K. Heitmann, Cosmic web, multistream flows, and tessellations. Phys. Rev. D 85(8), 083005 (2012)CrossRefADSGoogle Scholar
  61. 61.
    W. Del Pozzo, Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers. Phys. Rev. D 86(4), 043011 (2012)CrossRefADSGoogle Scholar
  62. 62.
    S.R. Taylor, J.R. Gair, I. Mandel, Cosmology using advanced gravitational-wave detectors alone. Phys. Rev. D 85(2), 023535 (2012)CrossRefADSGoogle Scholar
  63. 63.
    M. Kramer, N. Wex, The double pulsar system: a unique laboratory for gravity. Class. Quantum Gravity 26(7), 073001 (2009)CrossRefADSGoogle Scholar
  64. 64.
    J.M. Weisberg, D.J. Nice, J.H. Taylor, Timing measurements of the relativistic binary pulsar PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010)CrossRefADSGoogle Scholar
  65. 65.
    M. Kramer, Pulsars, SKA and time-domain studies in the future, in IAU Symposium, ed. by E. Griffin, R. Hanisch, R. Seaman, vol. 285, pp. 147–152, April 2012Google Scholar
  66. 66.
    S.M. Kopeikin, Celestial ephemerides in an expanding universe. Phys. Rev. D 86(6), 064004 (2012)CrossRefADSGoogle Scholar
  67. 67.
    S. Hojman, Problem of the identical vanishing of Euler-Lagrange derivatives in field theory. Phys. Rev. D 27, 451–453 (1983)CrossRefADSMathSciNetGoogle Scholar
  68. 68.
    N.V. Mitskevich, Physical Fields in General Relativity (Nauka, Moscow, 1969), p. 326Google Scholar
  69. 69.
    W. Greiner, J. Reinhardt, Field Quantization (Springer, Berlin, 1996). Translated from the German. With a foreword by D.A. BromleyCrossRefMATHGoogle Scholar
  70. 70.
    A.D. Popova, A.N. Petrov, Exact dynamic theories on a given background in gravitation. Int. J. Mod. Phys. A 3, 2651–2679 (1988)CrossRefADSMathSciNetGoogle Scholar
  71. 71.
    B. Schutz, Geometrical Methods of Mathematical Physics (Cambridge University Press, Cambridge, 1980)CrossRefMATHGoogle Scholar
  72. 72.
    A.N. Petrov, Nœther and Belinfante corrected types of currents for perturbations in the Einstein-Gauss-Bonnet gravity. Class. Quantum Gravity 28(21), 215021 (2011)CrossRefADSGoogle Scholar
  73. 73.
    L.P. Grishchuk, A.N. Petrov, A.D. Popova, Exact theory of the (Einstein) gravitational field in an arbitrary background space-time. Commun. Math. Phys. 94, 379–396 (1984)CrossRefADSMathSciNetGoogle Scholar
  74. 74.
    C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993), p. 396CrossRefMATHGoogle Scholar
  75. 75.
    E. Bertschinger, Testing dark matter models with the phase space structure of dark matter halos, in Probes of Dark Matter on Galaxy Scales, p. 10001 (2013)Google Scholar
  76. 76.
    I. Zlatev, L. Wang, P.J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–899 (1999)CrossRefADSGoogle Scholar
  77. 77.
    B.F. Schutz, Perfect fluids in general relativity: velocity potentials and a variational principle. Phys. Rev. D 2, 2762–2773 (1970)CrossRefADSMATHMathSciNetGoogle Scholar
  78. 78.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)Google Scholar
  79. 79.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, Oxford, 1975)Google Scholar
  80. 80.
    L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations (Cambridge University Press, Cambridge, 2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Physics & AstronomyUniversity of MissouriColumbiaUSA
  2. 2.Siberian State Academy of GeodesyNovosibirskRussia
  3. 3.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations