Multipolar Test Body Equations of Motion in Generalized Gravity Theories

  • Yuri N. ObukhovEmail author
  • Dirk Puetzfeld
Part of the Fundamental Theories of Physics book series (FTPH, volume 179)


We give an overview of the derivation of multipolar equations of motion of extended test bodies for a wide set of gravitational theories beyond the standard general relativistic framework. The classes of theories covered range from simple generalizations of General Relativity, e.g., encompassing additional scalar fields, to theories with additional geometrical structures which are needed for the description of microstructured matter. Our unified framework even allows to handle theories with nonminimal coupling to matter, and thereby for a systematic test of a very broad range of gravitational theories.


Test Body Extended Test Bodies Nonminimal Coupling Metric-affine Gravity (MAG) Hypermomentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank A. Trautman (University of Warsaw), W.G. Dixon (University of Cambridge), J. Madore (University of Paris South), and W. Tulczyjew (INFN Napoli) for sharing their insights into gravitational multipole formalisms and discussing their pioneering works with us. Furthermore, we would like to thank F.W. Hehl (University of Cologne) for fruitful discussion on gauge gravity models, in particular on Metric-Affine Gravity (MAG). This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant LA-905/8-1/2 and SFB 1128/1 (D.P.).


  1. 1.
    M. Mathisson, Neue Mechanik materieller Systeme. Acta Phys. Pol. 6, 163 (1937)zbMATHGoogle Scholar
  2. 2.
    A. Papapetrou, Spinning test-particles in general relativity. I. Proc. Roy. Soc. Lond. A 209, 248 (1951)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    W.G. Dixon, A covariant multipole formalism for extended test bodies in general relativity. Nuovo Cimento 34, 317 (1964)MathSciNetzbMATHGoogle Scholar
  4. 4.
    W.G. Dixon, Dynamics of extended bodies in general relativity. III. Equations of motion. Philos. Trans. R. Soc. Lond. A 277, 59 (1974)ADSMathSciNetGoogle Scholar
  5. 5.
    W.G. Dixon, Extended bodies in general relativity: their description and motion, in Proceedings of International School of Physics Enrico Fermi LXVII, ed. by J. Ehlers (North Holland, Amsterdam, 1979), p. 156Google Scholar
  6. 6.
    W.G. Dixon, Mathisson’s new mechanics: its aims and realisation. Acta Phys. Pol. B Proc. Suppl. 1, 27 (2008)Google Scholar
  7. 7.
    J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)zbMATHGoogle Scholar
  8. 8.
    B.S. DeWitt, R.W. Brehme, Radiation damping in a gravitational field. Ann. Phys. (N.Y.) 9, 220 (1960)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    A. Einstein, The Meaning of Relativity, 5th revised edn. (Princeton University Press, Princeton, 1956)Google Scholar
  10. 10.
    T. Harko, Thermodynamic interpretation of the generalized gravity models with geometry—matter coupling. Phys. Rev. D 90, 044067 (2014)ADSGoogle Scholar
  11. 11.
    H.J. Schmidt, Fourth order gravity: equations, history, and applications to cosmology. Int. J. Geom. Methods Mod. Phys. 4, 209 (2007)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    O. Bertolami, C.G. Böhmer, T. Harko, F.S.N. Lobo, Extra force in \(f(R)\) modified theories of gravity. Phys. Rev. D 75, 104016 (2007)ADSMathSciNetGoogle Scholar
  13. 13.
    N. Straumann, Problems with modified theories of gravity, as alternatives to dark energy (2008). arXiv:0809.5148v1 [gr-qc]
  14. 14.
    S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz non-invariant models. Phys. Rep. 505, 59 (2011)ADSMathSciNetGoogle Scholar
  15. 15.
    F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. I. Riemannian spacetime. Gen. Relativ. Gravit. 9, 691 (1978)ADSzbMATHGoogle Scholar
  16. 16.
    F.W. Hehl, G.D. Kerlick, Metric-affine variational principles in general relativity. II. Relaxation of the Riemannian constraint. Gen. Relativ. Gravit. 13, 1037 (1981)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    T.P. Sotiriou, V. Faraoni, \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)ADSzbMATHGoogle Scholar
  18. 18.
    P. Rastall, Generalization of the Einstein theory. Phys. Rev. D 6, 3357 (1972)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    L.L. Smalley, Modified Brans-Dicke gravitational theory with nonzero divergence of the energy-momentum tensor. Phys. Rev. D 9, 1635 (1974)ADSGoogle Scholar
  20. 20.
    M. Blagojević, Gravitation and Gauge Symmetries (IOP Publishing, London, 2002)zbMATHGoogle Scholar
  21. 21.
    M. Blagojević, F.W. Hehl, Gauge Theories of Gravitation. A Reader with Commentaries (Imperial College Press, London, 2013)zbMATHGoogle Scholar
  22. 22.
    Yu.N. Obukhov, D. Puetzfeld, Conservation laws in gravity: a unified framework. Phys. Rev. D 90, 024004 (2014)Google Scholar
  23. 23.
    Yu.N. Obukhov, D. Puetzfeld, Equations of motion in scalar-tensor theories of gravity: a covariant multipolar approach. Phys. Rev. D 90, 104041 (2014)Google Scholar
  24. 24.
    D. Puetzfeld, Yu.N. Obukhov, Equations of motion in metric-affine gravity: A covariant unified framework. Phys. Rev. D 90, 084034 (2014)Google Scholar
  25. 25.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 258, 1 (1995)ADSMathSciNetGoogle Scholar
  26. 26.
    D. Puetzfeld, Yu.N. Obukhov, Covariant equations of motion for test bodies in gravitational theories with general nonminimal coupling. Phys. Rev. D 87, 044045 (2013)Google Scholar
  27. 27.
    J.A. Schouten, Ricci-Calculus. An Introduction to Tensor Analysis and its Geometric Applications, 2nd edn. (Springer, Berlin, 1954)zbMATHGoogle Scholar
  28. 28.
    J.L. Synge, A. Schild, Tensor Calculus (Dover, New York, 1978)zbMATHGoogle Scholar
  29. 29.
    A. Lichnerowicz, Geometry of Groups of Transformations (Noordhoff International Publishing, Leyden, 1977)zbMATHGoogle Scholar
  30. 30.
    A. Trautman, On the Einstein-Cartan equations. IV. Bulletin de l’Académie Polonaise des Sciences, Sér. des Sciences Math., Astron, et Phys. 21, 345 (1973)Google Scholar
  31. 31.
    K. Yano, The Theory of Lie Derivatives and its Applications (North-Holland, Amsterdam, 1955)Google Scholar
  32. 32.
    D.W. Sciama, The analogy between charge and spin in general relativity, Recent Developments in General Relativity, Festschrift for L. Infeld (Pergamon Press, Oxford, 1962), p. 415Google Scholar
  33. 33.
    T.W.B. Kibble, Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. I. The notion of hypermomentum. Zeits. Naturforsch. 31a, 111 (1976)ADSGoogle Scholar
  35. 35.
    F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. II. The geometry of spacetime. Zeits. Naturforsch. 31a, 524 (1976)ADSGoogle Scholar
  36. 36.
    F.W. Hehl, G.D. Kerlick, P. von der Heyde, On hypermomentum in general relativity. III. Coupling hypermomentum to geometry. Zeits. Naturforsch. 31a, 823 (1976)ADSGoogle Scholar
  37. 37.
    V.N. Ponomariev, Yu.N. Obukhov, The generalized Einstein-Maxwell theory of gravitation. Gen. Relativ. Gravit. 14, 309 (1982)Google Scholar
  38. 38.
    D. Vassiliev, Quadratic metric-affine gravity. Ann. Phys. (Leipzig) 14, 231 (2005)ADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    T.P. Sotiriou, S. Liberati, Metric-affine \(f(R)\) theories of gravity. Ann. Phys. (N.Y.) 322, 935 (2007)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    V. Vitagliano, T.P. Sotiriou, S. Liberati, The dynamics of metric-affine gravity. Ann. Phys. (N.Y.) 326, 1259 (2011)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Yu.N. Obukhov, R. Tresguerres, Hyperfluid—a model of classical matter with hypermomentum. Phys. Lett. A 184, 17 (1993)Google Scholar
  42. 42.
    A.H. Taub, General relativistic variational principle for perfect fluids. Phys. Rev. 94, 1468 (1954)ADSMathSciNetGoogle Scholar
  43. 43.
    B.F. Schutz, Perfect fluids in general relativity: velocity potentials and variational principles. Phys. Rev. D 2, 2762 (1970)ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    J. Weyssenhoff, A. Raabe, Relativistic dynamics of spin-fluids and spin-particles. Acta Phys. Pol. 9, 7 (1947)MathSciNetGoogle Scholar
  45. 45.
    Yu.N. Obukhov, V.A. Korotky, The Weyssenhoff fluid in Einstein-Cartan theory. Class. Quantum Gravity 4, 1633 (1987)Google Scholar
  46. 46.
    Y. Ne’eman, F.W. Hehl, Test matter in a spacetime. Class. Quantum Gravity 14, A251 (1997)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Yu.N. Obukhov, Poincaré gauge gravity: selected topics. Int. J. Geom. Methods Mod. Phys. 3, 95 (2006)Google Scholar
  48. 48.
    Yu.N Obukhov, G.F. Rubilar, Invariant conserved currents in gravity theories with local Lorentz and diffeomorphism symmetry. Phys. Rev. D 74, 064002 (2006)Google Scholar
  49. 49.
    Yu.N. Obukhov, G.F. Rubilar, Invariant conserved currents in gravity theories: Diffeomorphisms and local gauge symmetries. Phys. Rev. D 76, 124030 (2007)Google Scholar
  50. 50.
    W.G. Dixon, Description of extended bodies by multipole moments in special relativity. J. Math. Phys. 8, 1591 (1967)Google Scholar
  51. 51.
    D. Puetzfeld, Yu.N. Obukhov, Equations of motion in gravity theories with nonminimal coupling: A loophole to detect torsion macroscopically? Phys. Rev. D 88, 064025 (2013)Google Scholar
  52. 52.
    H. Weyl, Raum-Zeit-Materie (Springer, Berlin, 1923)zbMATHGoogle Scholar
  53. 53.
    P.B. Yasskin, W.R. Stoeger, Propagation equations for test bodies with spin and rotation in theories of gravity with torsion. Phys. Rev. D 21, 2081 (1980)ADSMathSciNetGoogle Scholar
  54. 54.
    C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    C. Brans, Mach’s principle and a relativistic theory of gravitation. II. Phys. Rev. 125, 2194 (1962)ADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    C. Brans, Mach’s principle and locally measured gravitational constant in general relativity. Phys. Rev. 125, 388 (1962)ADSGoogle Scholar
  57. 57.
    R.H. Dicke, Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)ADSMathSciNetzbMATHGoogle Scholar
  58. 58.
    R.H. Dicke, The Theoretical Significance of Experimental Relativity (Gordon and Breach, New York, 1964)zbMATHGoogle Scholar
  59. 59.
    P. Jordan, Schwerkraft und Weltall, 2nd edn. (Vieweg, Braunschweig, 1955)zbMATHGoogle Scholar
  60. 60.
    P. Jordan, Zum gegenwärtigen Stand der Diracschen kosmologischen Hypothesen. Z. Phys. 157, 112 (1959)ADSGoogle Scholar
  61. 61.
    Y. Thiry, Etude mathématique des équations d’une théorie unitaire à quinze variables de champ. J. Math. Pures et Appl. Sér. 9 30, 275 (1951)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Y. Fujii, K. Maeda, The Scalar-tensor Theory of Gravity (Cambridge University Press, Cambridge, 2003)zbMATHGoogle Scholar
  63. 63.
    C. Brans, The roots of scalar-tensor theory: an approximate history (2005). arXiv:gr-qc/0506063
  64. 64.
    H. Goenner, Some remarks on the genesis of scalar-tensor theories. Gen. Relativ. Gravit. 44, 2077 (2012)ADSMathSciNetzbMATHGoogle Scholar
  65. 65.
    T.P. Sotiriou, Gravity and scalar fields. Lecture Notes in Physics, ed. by E. Papantonopoulos 892, 3 (2015)Google Scholar
  66. 66.
    P. Bergmann, Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1, 25 (1968)Google Scholar
  67. 67.
    R.V. Wagoner, Scalar-tensor theory and gravitational waves. Phys. Rev. 12, 3209 (1970)Google Scholar
  68. 68.
    T. Damour, G. Esposito-Farèse, Tensor-multi-scalar theories of gravitation. Class. Quantum Gravity 9, 2093 (1992)ADSMathSciNetzbMATHGoogle Scholar
  69. 69.
    C.M. Will, Theory and Experiment in Gravitational Physics, 2nd edn. (Cambridge University Press, Cambridge, 1993)zbMATHGoogle Scholar
  70. 70.
    F.W. Hehl, How does one measure torsion of space-time? Phys. Lett. A 36, 225 (1971)ADSMathSciNetGoogle Scholar
  71. 71.
    I. Bailey, W. Israel, Lagrangian dynamics of spinning particles and polarized media in general relativity. Commun. Math. Phys. 42, 65 (1975)ADSMathSciNetGoogle Scholar
  72. 72.
    W.R. Stoeger, P.B. Yasskin, Can a macroscopic gyroscope feel torsion? Gen. Relativ. Gravit. 11, 427 (1979)ADSMathSciNetzbMATHGoogle Scholar
  73. 73.
    D. Puetzfeld, Yu.N. Obukhov, Propagation equations for deformable test bodies with microstructure in extended theories of gravity. Phys. Rev. D 76, 084025 (2007)Google Scholar
  74. 74.
    D. Puetzfeld, Yu.N. Obukhov, Motion of test bodies in theories with nonminimal coupling. Phys. Rev. D 78, 121501 (2008)Google Scholar
  75. 75.
    D. Puetzfeld, Yu.N. Obukhov, Probing non-Riemannian spacetime geometry. Phys. Lett. A 372, 6711 (2008)Google Scholar
  76. 76.
    F.W. Hehl, Yu.N. Obukhov, D. Puetzfeld, On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B. Phys. Lett. A 377, 1775 (2013)Google Scholar
  77. 77.
    D. Puetzfeld, Yu.N. Obukhov, Unraveling gravity beyond Einstein with extended test bodies. Phys. Lett. A 377, 2447 (2013)Google Scholar
  78. 78.
    D. Puetzfeld, Yu.N. Obukhov, Prospects of detecting spacetime torsion. Int. J. Mod. Phys. D 23, 1442004 (2014)Google Scholar
  79. 79.
    A. Einstein, Geometrie und Erfahrung. Sitzungsber. Preuss. Akad. Wiss. 1, 123 (1921)zbMATHGoogle Scholar
  80. 80.
    E. Poisson, A. Pound, I. Vega, The motion of point particles in curved spacetime. Living Rev. Relativ. 14(7) (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Theoretical Physics Laboratory, Nuclear Safety InstituteRussian Academy of SciencesMoscowRussia
  2. 2.ZARMUniversity of BremenBremenGermany

Personalised recommendations