Spin and Quadrupole Contributions to the Motion of Astrophysical Binaries

  • Jan SteinhoffEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 179)


Compact objects in general relativity approximately move along geodesics of spacetime. It is shown that the corrections to geodesic motion due to spin (dipole), quadrupole, and higher multipoles can be modeled by an extension of the point mass action. The quadrupole contributions are discussed in detail for astrophysical objects like neutron stars or black holes. Implications for binaries are analyzed for a small mass ratio situation. There quadrupole effects can encode information about the internal structure of the compact object, e.g., in principle they allow a distinction between black holes and neutron stars, and also different equations of state for the latter. Furthermore, a connection between the relativistic oscillation modes of the object and a dynamical quadrupole evolution is established.



I am indebted to all of my collaborators contributing directly or indirectly to the material presented here: Sayan Chakrabarti, Trence Delsate, Norman Gürlebeck, Johannes Hartung, Steven Hergt, Dirk Puetzfeld, Gerhard Schäfer, and Manuel Tessmer. This work was supported by DFG (Germany) through projects STE 2017/1-1 and STE 2017/2-1, and by FCT (Portugal) through projects SFRH/BI/52132/2013 and PCOFUND-GA-2009-246542 (co-funded by Marie Curie Actions).


  1. 1.
    M. Mathisson, Neue Mechanik materieller Systeme. Acta Phys. Pol. 6, 163–200 (1937)Google Scholar
  2. 2.
    M. Mathisson, Republication of: new mechanics of material systems. Gen. Relativ. Gravit. 42, 1011–1048 (2010)CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. 3.
    W.G. Dixon, Extended bodies in general relativity: their description and motion, in Proceedings of the International School of Physics Enrico Fermi LXVII, ed. by J. Ehlers (North Holland, Amsterdam, 1979), pp. 156–219Google Scholar
  4. 4.
    A. Papapetrou, Spinning test-particles in general relativity. I. Proc. R. Soc. A 209, 248–258 (1951)CrossRefADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    K. Westpfahl, Relativistische Bewegungsprobleme. VI. Rotator-Spinteilchen und allgemeine Relativitätstheorie. Ann. Phys. (Berlin) 477, 361–371 (1969)CrossRefADSGoogle Scholar
  6. 6.
    I. Bailey, W. Israel, Lagrangian dynamics of spinning particles and polarized media in general relativity. Commun. Math. Phys. 42, 65–82 (1975)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    T. Damour, Gravitational radiation and the motion of compact bodies, in Gravitational Radiation, ed. by N. Deruelle, T. Piran (North Holland, Amsterdam, 1983), pp. 59–144Google Scholar
  8. 8.
    W.D. Goldberger, I.Z. Rothstein, An effective field theory of gravity for extended objects. Phys. Rev. D 73, 104029 (2006)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    R.A. Porto, Post-Newtonian corrections to the motion of spinning bodies in nonrelativistic general relativity. Phys. Rev. D 73, 104031 (2006)CrossRefADSGoogle Scholar
  10. 10.
    J. Steinhoff, G. Schäfer, Canonical formulation of self-gravitating spinning-object systems. Europhys. Lett. 87, 50004 (2009)CrossRefADSGoogle Scholar
  11. 11.
    J. Steinhoff, Canonical formulation of spin in general relativity. Ann. Phys. (Berlin) 523, 296–353 (2011)CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    B.S. DeWitt, Bryce DeWitt’s Lectures on Gravitation, vol. 826, 1st edn. Lecture Notes in Physics (Springer, Berlin, 2011)Google Scholar
  13. 13.
    L. Blanchet, A. Buonanno, A. Le Tiec, First law of mechanics for black hole binaries with spins. Phys. Rev. D 87, 024030 (2013)CrossRefADSGoogle Scholar
  14. 14.
    W.G. Laarakkers, E. Poisson, Quadrupole moments of rotating neutron stars. Astrophys. J. 512, 282–287 (1999)CrossRefADSGoogle Scholar
  15. 15.
    T. Damour, A. Nagar, Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    T. Binnington, E. Poisson, Relativistic theory of tidal love numbers. Phys. Rev. D 80, 084018 (2009)CrossRefADSGoogle Scholar
  17. 17.
    T. Hinderer, Tidal love numbers of neutron stars. Astrophys. J. 677, 1216–1220 (2008)CrossRefADSGoogle Scholar
  18. 18.
    S. Chakrabarti, T. Delsate, J. Steinhoff. New perspectives on neutron star and black hole spectroscopy and dynamic tides (2013)Google Scholar
  19. 19.
    S. Chakrabarti, T. Delsate, J. Steinhoff, Effective action and linear response of compact objects in Newtonian gravity. Phys. Rev. D 88, 084038 (2013)CrossRefADSGoogle Scholar
  20. 20.
    H. Goenner, K. Westpfahl, Relativistische Bewegungsprobleme. II. Der starre Rotator. Ann. Phys. (Berlin) 475, 230–240 (1967)CrossRefADSGoogle Scholar
  21. 21.
    H. Römer, K. Westpfahl, Relativistische Bewegungsprobleme. IV. Rotator-Spinteilchen in schwachen Gravitationsfeldern. Ann. Phys. (Berlin) 477, 264–276 (1969)CrossRefADSGoogle Scholar
  22. 22.
    A.J. Hanson, T. Regge, The relativistic spherical top. Ann. Phys. (N.Y.) 87, 498–566 (1974)CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    M. Leclerc, Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation. Class. Quantum Gravity 22, 3203–3222 (2005)CrossRefADSzbMATHMathSciNetGoogle Scholar
  24. 24.
    J. Natario, Tangent Euler top in general relativity. Commun. Math. Phys. 281, 387–400 (2008)CrossRefADSzbMATHMathSciNetGoogle Scholar
  25. 25.
    B.S. DeWitt. Dynamical theory of groups and fields, in Relativity, Groups, and Topology, Les Houches 1963 (Gordon and Breach, New York, 1964)Google Scholar
  26. 26.
    T. Damour, G. Schäfer, Redefinition of position variables and the reduction of higher order Lagrangians. J. Math. Phys. 32, 127–134 (1991)CrossRefADSzbMATHMathSciNetGoogle Scholar
  27. 27.
    W.M. Tulczyjew, Motion of multipole particles in general relativity theory. Acta Phys. Pol. 18, 393–409 (1959)zbMATHMathSciNetGoogle Scholar
  28. 28.
    J. Steinhoff, D. Puetzfeld, Multipolar equations of motion for extended test bodies in general relativity. Phys. Rev. D 81, 044019 (2010)CrossRefADSGoogle Scholar
  29. 29.
    A.I. Harte, Mechanics of extended masses in general relativity. Class. Quantum Gravity 29, 055012 (2012)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    E. Noether, Invariante Variationsprobleme. Nachr. Akad. Wiss. Gött. 235–257 (1918)Google Scholar
  31. 31.
    J. Ehlers, E. Rudolph, Dynamics of extended bodies in general relativity—center-of-mass description and quasirigidity. Gen. Relativ. Gravit. 8, 197–217 (1977)CrossRefADSzbMATHMathSciNetGoogle Scholar
  32. 32.
    K. Yee, M. Bander, Equations of motion for spinning particles in external electromagnetic and gravitational fields. Phys. Rev. D 48, 2797–2799 (1993)CrossRefADSMathSciNetGoogle Scholar
  33. 33.
    R.A. Porto, I.Z. Rothstein, Spin(1)spin(2) effects in the motion of inspiralling compact binaries at third order in the post-Newtonian expansion. Phys. Rev. D 78, 044012 (2008)CrossRefADSGoogle Scholar
  34. 34.
    R.A. Porto, I.Z. Rothstein, Next to leading order spin(1)spin(1) effects in the motion of inspiralling compact binaries. Phys. Rev. D 78, 044013 (2008)CrossRefADSGoogle Scholar
  35. 35.
    L. Rosenfeld, Zur Quantelung der Wellenfelder. Ann. Phys. (Berlin) 397, 113–152 (1930)CrossRefADSGoogle Scholar
  36. 36.
    P.A.M. Dirac, Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    W. Beiglböck, The center-of-mass in Einsteins theory of gravitation. Commun. Math. Phys. 5, 106–130 (1967)CrossRefADSzbMATHGoogle Scholar
  38. 38.
    R. Schattner, The center of mass in general relativity. Gen. Relativ. Gravit. 10, 377–393 (1979)CrossRefADSMathSciNetGoogle Scholar
  39. 39.
    R. Schattner, The uniqueness of the center of mass in general relativity. Gen. Relativ. Gravit. 10, 395–399 (1979)CrossRefADSMathSciNetGoogle Scholar
  40. 40.
    K. Kyrian, O. Semerák, Spinning test particles in a Kerr field – II. Mon. Not. R. Astron. Soc. 382, 1922–1932 (2007)CrossRefADSGoogle Scholar
  41. 41.
    C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, New York, 1973)Google Scholar
  42. 42.
    N. Stergioulas, S. Morsink, RNS codeGoogle Scholar
  43. 43.
    N. Stergioulas, J.L. Friedman, Comparing models of rapidly rotating relativistic stars constructed by two numerical methods. Astrophys. J. 444, 306–311 (1995)CrossRefADSGoogle Scholar
  44. 44.
    H.P. Künzle, Canonical dynamics of spinning particles in gravitational and electromagnetic fields. J. Math. Phys. 13, 739–744 (1972)CrossRefADSzbMATHGoogle Scholar
  45. 45.
    W.D. Goldberger, I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics. Phys. Rev. D 73, 104030 (2006)CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    T. Damour, G. Esposito-Farèse, Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D 58, 042001 (1998)CrossRefADSGoogle Scholar
  47. 47.
    K.S. Thorne, Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299–339 (1980)CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    D. Bini, A. Geralico, Deviation of quadrupolar bodies from geodesic motion in a Kerr spacetime. Phys. Rev. D 89, 044013 (2014)CrossRefADSGoogle Scholar
  49. 49.
    G. Pappas, T.A. Apostolatos, Revising the multipole moments of numerical spacetimes, and its consequences. Phys. Rev. Lett. 108, 231104 (2012)CrossRefADSGoogle Scholar
  50. 50.
    S. Chakrabarti, T. Delsate, N. Gürlebeck, J. Steinhoff, The I-Q relation for rapidly rotating neutron stars (2013)Google Scholar
  51. 51.
    S.N. Rasband, Black holes and spinning test bodies. Phys. Rev. Lett. 30, 111–114 (1973)CrossRefADSGoogle Scholar
  52. 52.
    J. Steinhoff, D. Puetzfeld, Influence of internal structure on the motion of test bodies in extreme mass ratio situations. Phys. Rev. D 86, 044033 (2012)CrossRefADSGoogle Scholar
  53. 53.
    D. Bini, A. Geralico, Dynamics of quadrupolar bodies in a Schwarzschild spacetime. Phys. Rev. D 87, 024028 (2013)CrossRefADSGoogle Scholar
  54. 54.
    A. Le Tiec, E. Barausse, A. Buonanno, Gravitational self-force correction to the binding energy of compact binary systems. Phys. Rev. Lett. 108, 131103 (2012)CrossRefADSGoogle Scholar
  55. 55.
    W.H. Press, S.A. Teukolsky, On formation of close binaries by two-body tidal capture. Astrophys. J. 213, 183–192 (1977)CrossRefADSMathSciNetGoogle Scholar
  56. 56.
    M.E. Alexander, Tidal resonances in binary star systems. Mon. Not. R. Astron. Soc. 227, 843–861 (1987)CrossRefADSzbMATHGoogle Scholar
  57. 57.
    Y. Rathore, A.E. Broderick, R. Blandford, A variational formalism for tidal excitation: Non-rotating, homentropic stars. Mon. Not. R. Astron. Soc. 339, 25–32 (2003)CrossRefADSGoogle Scholar
  58. 58.
    É.E. Flanagan, É. Racine, Gravitomagnetic resonant excitation of Rossby modes in coalescing neutron star binaries. Phys. Rev. D 75, 044001 (2007)CrossRefADSGoogle Scholar
  59. 59.
    W.D. Goldberger, A. Ross, Gravitational radiative corrections from effective field theory. Phys. Rev. D 81, 124015 (2010)CrossRefADSGoogle Scholar
  60. 60.
    F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)CrossRefADSGoogle Scholar
  61. 61.
    T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)CrossRefADSzbMATHMathSciNetGoogle Scholar
  62. 62.
    S. Chandrasekhar, On the equations governing the perturbations of the Schwarzschild black hole. Proc. R. Soc. A 343, 289–298 (1975)CrossRefADSMathSciNetGoogle Scholar
  63. 63.
    D. Bini, T. Damour, G. Faye, Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description. Phys. Rev. D 85, 124034 (2012)CrossRefADSGoogle Scholar
  64. 64.
    B. Kol, M. Smolkin, Black hole stereotyping: induced gravito-static polarization. JHEP 1202, 010 (2012)CrossRefADSGoogle Scholar
  65. 65.
    S. Mano, E. Takasugi, Analytic solutions of the Teukolsky equation and their properties. Prog. Theor. Phys. 97, 213–232 (1997)CrossRefADSMathSciNetGoogle Scholar
  66. 66.
    K. Yagi, N. Yunes, I-Love-Q: Unexpected universal relations for neutron stars and quark stars. Science 341, 365–368 (2013)CrossRefADSGoogle Scholar
  67. 67.
    K. Yagi, N. Yunes, I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves and fundamental physics. Phys. Rev. D 88, 023009 (2013)CrossRefADSGoogle Scholar
  68. 68.
    A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri, P. Pani, Equation-of-state-independent relations in neutron stars. Phys. Rev. D 88, 023007 (2013)CrossRefADSGoogle Scholar
  69. 69.
    M. Bauböck, E. Berti, D. Psaltis, F. Özel, Relations between neutron-star parameters in the Hartle-Thorne approximation. Astrophys. J. 777, 68 (2013)CrossRefADSGoogle Scholar
  70. 70.
    B. Haskell, R. Ciolfi, F. Pannarale, L. Rezzolla, On the universality of I-Love-Q relations in magnetized neutron stars. Mon. Not. R. Astron. Soc. Lett. 438, L71–L75 (2014)CrossRefADSGoogle Scholar
  71. 71.
    D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Breakdown of I-Love-Q universality in rapidly rotating relativistic stars. Astrophys. J. Lett. 781, L6 (2014)CrossRefADSGoogle Scholar
  72. 72.
    G. Pappas, T.A. Apostolatos, Universal behavior of rotating neutron stars in GR: even simpler than their Newtonian counterparts (2013)Google Scholar
  73. 73.
    K. Yagi, Multipole love relations (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centro Multidisciplinar de Astrofísica (CENTRA)Instituto Superior Técnico (IST)LisbonPortugal

Personalised recommendations