Synthesis and Application of Solution-Based II–VI and IV–VI Semiconductor Nanowires

Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

Semiconductor nanowires (NWs) possess unique optical and electrical properties due to their anisotropic shape as well as their size-tunable electronic structure. In this chapter, we discuss the solution phase synthesis of II–VI and IV–VI semiconductor nanowires (e.g. ZnSe, CdS, CdSe, CdTe, PbS, PbSe, and PbSexS1−x) as well as NW-based heterostructures involving core/shell and metal nanoparticle-decorated morphologies. We subsequently discuss the application of these materials within the context of nanowire yarns, nanowire-functionalized cotton textiles, and renewable energy applications involving nanostructured solar cells and photocatalytic hydrogen generation.

Notes

Acknowledgments

PT thanks the Royal Thai Government Scholarship for financial support. MZ thanks the Notre Dame Innovation Postdoc Fund and ND Energy for financial support. MK thanks the NSF (CHE1208091) for financial support. We thank Rusha Chatterjee for assistance in editing this chapter.

References

  1. 1.
    R. Zhou, H.-C. Chang, V. Protasenko, M. Kuno, A.K. Singh, D. Jena, H.G. Xing, CdSe nanowires with illumination-enhanced conductivity: induced dipoles, dielectrophoretic assembly, and field-sensitive emission. J. Appl. Phys. 101, 073704 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    N. Petchsang, M.P. McDonald, L.E. Sinks, M. Kuno, Light induced nanowire assembly: the electrostatic alignment of semiconductor nanowires into functional macroscopic yarns. Adv. Mater. 25, 601–605 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Zhukovskyi, L. Sanchez-Botero, M.P. McDonald, J. Hinestroza, M. Kuno, Nanowire-functionalized cotton textiles. ACS Appl. Mater. Interfaces 6, 2262–2269 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Singh, X. Li, V. Protasenko, G. Galantai, M. Kuno, H.G. Xing, D. Jena, Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids. Nano Lett. 7, 2999–3006 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    H. Choi, M. Kuno, G.V. Hartland, P.V. Kamat, CdSe nanowire solar cells using carbazole as a surface modifier. J. Mater. Chem. A 1, 5487–5491 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Feng, Q. Zhang, L. Lin, H. Guo, J. Zhou, Z. Lin, ⟨0001⟩-Preferential growth of CdSe nanowires on conducting glass: template-free electrodeposition and application in photovoltaics. Chem. Mater. 22, 2705–2710 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Choi, P.V. Kamat, CdS nanowire solar cells: dual role of squaraine dye as a sensitizer and a hole transporter. J. Phys. Chem. Lett. 4, 3983–3991 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Yu, P.V. Kamat, M. Kuno, A CdSe nanowire/quantum dot hybrid architecture for improving solar cell performance. Adv. Funct. Mater. 20, 1464–1472 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Choi, J.G. Radich, P.V. Kamat, Sequentially layered CdSe/CdS nanowire architecture for improved nanowire solar cell performance. J. Phys. Chem. C 118, 206–213 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Tongying, V.V. Plashnitsa, N. Petchsang, F. Vietmeyer, G.J. Ferraudi, G. Krylova, M. Kuno, Photocatalytic hydrogen generation efficiencies in one-dimensional CdSe heterostructures. J. Phys. Chem. Lett. 3, 3234–3240 (2012)CrossRefGoogle Scholar
  11. 11.
    P. Tongying, F. Vietmeyer, D. Aleksiuk, G.J. Ferraudi, G. Krylova, M. Kuno, Double heterojunction nanowire photocatalysts for hydrogen generation. Nanoscale 6, 4117–4124 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Yang, J. Li, H. Wu, E. Oh, D. Yu, Controlled ambipolar doping and gate voltage dependent carrier diffusion length in lead sulfide nanowires. Nano Lett. 12, 5890–5896 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    W. Liang, O. Rabin, A.I. Hochbaum, M. Fardy, M. Zhang, P. Yang, Thermoelectric properties of p-type PbSe nanowires. Nano Res. 2, 394–399 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang, P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Adv. Mater. 19, 3047–3051 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Graham, C. Miller, E. Oh, D. Yu, Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano Lett. 11, 717–722 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    S.Y. Jang, Y.M. Song, H.S. Kim, Y.J. Cho, Y.S. Seo, G.B. Jung, C.-W. Lee, J. Park, M. Jung, J. Kim, B. Kim, J.-G. Kim, Y.-J. Kim, Three synthetic routes to single-crystalline PbS nanowires with controlled growth direction and their electrical transport properties. ACS Nano 4, 2391–2401 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Yang, X. Peng, D. Yu, High intensity induced photocurrent polarity switching in lead sulfide nanowire field effect transistors. Nanotechnology 25, 195202 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)ADSCrossRefGoogle Scholar
  19. 19.
    R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969–971 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Kogel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471–1473 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, W.E. Buhro, Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    H. Yu, P.C. Gibbons, K.F. Kelton, W.E. Buhro, Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J. Am. Chem. Soc. 123, 9198–9199 (2001)CrossRefGoogle Scholar
  23. 23.
    F. Wang, R. Tang, H. Yu, P.C. Gibbons, W.E. Buhro, Size- and shape-controlled synthesis of bismuth nanoparticles. Chem. Mater. 20, 3656–3662 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Yu, J. Li, R.A. Loomis, L.-W. Wang, W.E. Buhro, Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Nat. Mater. 2, 517–520 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    H. Yu, W.E. Buhro, Solution–liquid–solid growth of soluble GaAs nanowires. Adv. Mater. 15, 416–419 (2003)CrossRefGoogle Scholar
  26. 26.
    H. Yu, J. Li, R.A. Loomis, P.C. Gibbons, L.-W. Wang, W.E. Buhro, Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc. 125, 16168–16169 (2003)CrossRefGoogle Scholar
  27. 27.
    J.W. Grebinski, K.L. Richter, J. Zhang, T.H. Kosel, M. Kuno, Synthesis and characterization of Au/Bi core/shell nanocrystals: a precursor toward II–VI nanowires. J. Phys. Chem. B 108, 9745–9751 (2004)CrossRefGoogle Scholar
  28. 28.
    D.D. Fanfair, B.A. Korgel, Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst. Growth Des. 5, 1971–1976 (2005)CrossRefGoogle Scholar
  29. 29.
    Z. Li, A. Kornowski, A. Myalitsin, A. Mews, Formation and function of bismuth nanocatalysts for the solution–liquid–solid synthesis of CdSe nanowires. Small 4, 1698–1702 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Puthussery, T.H. Kosel, M. Kuno, Facile synthesis and size control of II-VI nanowires using bismuth salts. Small 5, 1112–1116 (2009)CrossRefGoogle Scholar
  31. 31.
    J.W. Grebinski, K.L. Hull, J. Zhang, T.H. Kosel, M. Kuno, Solution-based straight and branched CdSe nanowires. Chem. Mater. 16, 5260–5272 (2004)CrossRefGoogle Scholar
  32. 32.
    M. Kuno, O. Ahmad, V. Protasenko, D. Bacinello, T.H. Kosel, Solution-based straight and branched CdTe nanowires. Chem. Mater. 18, 5722–5732 (2006)CrossRefGoogle Scholar
  33. 33.
    Z. Li, Ö. Kurtulus, N. Fu, Z. Wang, A. Kornowski, U. Pietsch, A. Mews, Controlled synthesis of CdSe nanowires by solution–liquid–solid method. Adv. Funct. Mater. 19, 3650–3661 (2009)CrossRefGoogle Scholar
  34. 34.
    F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W.E. Buhro, Solution–liquid–solid growth of semiconductor nanowires. Inorg. Chem. 45, 7511–7521 (2006)CrossRefGoogle Scholar
  35. 35.
    A. Dong, F. Wang, T.L. Daulton, W.E. Buhro, Solution–liquid–solid (SLS) growth of ZnSe–ZnTe quantum wires having axial heterojunctions. Nano Lett. 7, 1308–1313 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    D.D. Fanfair, B.A. Korgel, Twin-related branching of solution-grown ZnSe nanowires. Chem. Mater. 19, 4943–4948 (2007)CrossRefGoogle Scholar
  37. 37.
    N. Petchsang, L. Shapoval, F. Vietmeyer, Y. Yu, J.H. Hodak, I.M. Tang, T.H. Kosel, M. Kuno, Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires. Nanoscale 3, 3145–3151 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    M.L. Steigerwald, C.R. Sprinkle, Application of phosphine tellurides to the preparation of Group II-VI (2–16) semiconductor materials. Organometallics 7, 245–246 (1988)CrossRefGoogle Scholar
  39. 39.
    C.B. Murray, D.J. Norris, M.G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)CrossRefGoogle Scholar
  40. 40.
    M. Kuno, An overview of solution-based semiconductor nanowires: synthesis and optical studies. Phys. Chem. Chem. Phys. 10, 620–639 (2008)CrossRefGoogle Scholar
  41. 41.
    M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31, 2061–2065 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    Q. Li, X. Gong, C. Wang, J. Wang, K. Ip, S. Hark, Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004)CrossRefGoogle Scholar
  43. 43.
    K.L. Hull, J.W. Grebinski, T.H. Kosel, M. Kuno, Induced branching in confined PbSe nanowires. Chem. Mater. 17, 4416–4425 (2005)CrossRefGoogle Scholar
  44. 44.
    K.-T. Yong, Y. Sahoo, K.R. Choudhury, M.T. Swihart, J.R. Minter, P.N. Prasad, Control of the morphology and size of PbS nanowires using gold nanoparticles. Chem. Mater. 18, 5965–5972 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Sun, W.E. Buhro, The use of single-source precursors for the solution–liquid–solid growth of metal sulfide semiconductor nanowires. Angew. Chem. Int. Ed. 47, 3215–3218 (2008)CrossRefGoogle Scholar
  46. 46.
    A.C. Onicha, N. Petchsang, T.H. Kosel, M. Kuno, Controlled synthesis of compositionally tunable ternary PbSexS1–x as well as binary PbSe and PbS nanowires. ACS Nano 6, 2833–2843 (2012)CrossRefGoogle Scholar
  47. 47.
    J.K. Hyun, S. Zhang, L.J. Lauhon, Nanowire heterostructures. Annu. Rev. Mater. Res. 43, 451–479 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Z. Li, X. Ma, Q. Sun, Z. Wang, J. Liu, Z. Zhu, S.Z. Qiao, S.C. Smith, G.M. Lu, A. Mews, Synthesis and characterization of colloidal core–shell semiconductor nanowires. Eur. J. Inorg. Chem. 27, 4325–4331 (2010)Google Scholar
  49. 49.
    J.A. Goebl, R.W. Black, J. Puthussery, J. Giblin, T.H. Kosel, M. Kuno, Solution-based II–VI core/shell nanowire heterostructures. J. Am. Chem. Soc. 130, 14822–14833 (2008)CrossRefGoogle Scholar
  50. 50.
    S. Schäfer, A. Reich, Z. Wang, T. Kipp, A. Mews, Charge separation in CdSe/CdTe hetero-nanowires measured by electrostatic force microscopy. Appl. Phys. Lett. 100, 022110 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003)CrossRefGoogle Scholar
  52. 52.
    X. Peng, M.C. Schlamp, A.V. Kadavanich, A.P. Alivisatos, Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997)CrossRefGoogle Scholar
  53. 53.
    M.A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)CrossRefGoogle Scholar
  54. 54.
    B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, (CdSe)ZnS core–shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)CrossRefGoogle Scholar
  55. 55.
    R. Costi, A.E. Saunders, U. Banin, Colloidal hybrid nanostructures: a new type of functional materials. Angew. Chem. Int. Ed. 49, 4878–4897 (2010)CrossRefGoogle Scholar
  56. 56.
    A. Vaneski, A.S. Susha, J. Rodríguez-Fernández, M. Berr, F. Jäckel, J. Feldmann, A.L. Rogach, Hybrid colloidal heterostructures of anisotropic semiconductor nanocrystals decorated with noble metals: synthesis and function. Adv. Funct. Mater. 21, 1547–1556 (2011)CrossRefGoogle Scholar
  57. 57.
    U. Banin, Y. Ben-Shahar, K. Vinokurov, Hybrid semiconductor–metal nanoparticles: from architecture to function. Chem. Mater. 26, 97–110 (2014)CrossRefGoogle Scholar
  58. 58.
    P. Guo, J. Xu, X. Zhuang, W. Hu, X. Zhu, H. Zhou, L. Tang, A. Pan, Surface plasmon resonance enhanced band-edge emission of CdS–SiO2 core–shell nanowires with gold nanoparticles attached. J. Mater. Chem. C 1, 566–571 (2013)CrossRefGoogle Scholar
  59. 59.
    X. Peng, J. Wickham, A.P. Alivisatos, Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J. Am. Chem. Soc. 120, 5343–5344 (1998)CrossRefGoogle Scholar
  60. 60.
    D.V. Talapin, A.L. Rogach, M. Haase, H. Weller, Evolution of an ensemble of nanoparticles in a colloidal solution: theoretical study. J. Phys. Chem. B 105, 12278–12285 (2001)CrossRefGoogle Scholar
  61. 61.
    D.V. Talapin, H. Yu, E.V. Shevchenko, A. Lobo, C.B. Murray, Synthesis of colloidal PbSe/PbS core–shell nanowires and PbS/Au nanowire–nanocrystal heterostructures. J. Phys. Chem. C 111, 14049–14054 (2007)CrossRefGoogle Scholar
  62. 62.
    I. Jen-La Plante, S.E. Habas, B.D. Yuhas, D.J. Gargas, T. Mokari, Interfacing metal nanoparticles with semiconductor nanowires. Chem. Mater. 21, 3662–3667 (2009)CrossRefGoogle Scholar
  63. 63.
    G. Menagen, J.E. Macdonald, Y. Shemesh, I. Popov, U. Banin, Au growth on semiconductor nanorods: photoinduced versus thermal growth mechanisms. J. Am. Chem. Soc. 131, 17406–17411 (2009)CrossRefGoogle Scholar
  64. 64.
    S.E. Habas, P. Yang, T. Mokari, Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 130, 3294–3295 (2008)CrossRefGoogle Scholar
  65. 65.
    Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    A. Theron, E. Zussman, A.L. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384–390 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003)ADSCrossRefGoogle Scholar
  68. 68.
    S. Schäfer, Z. Wang, R. Zierold, T. Kipp, A. Mews, Laser-induced charge separation in CdSe nanowires. Nano Lett. 11, 2672–2677 (2011)CrossRefGoogle Scholar
  69. 69.
    J. Giblin, M. Syed, M.T. Banning, M. Kuno, G. Hartland, Experimental determination of single CdSe nanowire absorption cross sections through photothermal imaging. ACS Nano 4, 358–364 (2010)CrossRefGoogle Scholar
  70. 70.
    V. Protasenko, D. Bacinello, M. Kuno, Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires. J. Phys. Chem. B 110, 25322–25331 (2006)CrossRefGoogle Scholar
  71. 71.
    J. Giblin, M. Kuno, Nanostructure absorption: a comparative study of nanowire and colloidal quantum dot absorption cross sections. J. Phys. Chem. Lett. 1, 3340–3348 (2010)CrossRefGoogle Scholar
  72. 72.
    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310, 462–465 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    V.I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. J. Phys. Chem. B 104, 6112–6123 (2000)CrossRefGoogle Scholar
  74. 74.
    A. Wood, M. Giersig, P. Mulvaney, Fermi level equilibration in quantum dot–metal nanojunctions. J. Phys. Chem. B 105, 8810–8815 (2001)CrossRefGoogle Scholar
  75. 75.
    J.U. Bang, S.J. Lee, J.S. Jang, W. Choi, H. Song, Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation. J. Phys. Chem. Lett. 3, 3781–3785 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA

Personalised recommendations