The Meaning of the Problem in a Mathematical Modelling Activity

  • Lourdes Maria Werle de AlmeidaEmail author
  • Karina Alessandra Pessoa da Silva
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)


In this chapter we present a reflection on the assignment of meaning associated with the problem identified and solved in a mathematical modelling activity. Initially, we present our understanding of the notions of problem and mathematical modelling. To treat the meaning issue about the problem in modelling activities we have based our approach in Peircean Semiotics where the meaning is associated with the generation of interpretants during the development of activities. To illustrate our understanding, we describe briefly, the case of a modelling activity developed by students in a mathematics degree course, presenting the generation of interpretants by one student and indications of meaning assignment for the problems revealed by him.


Modelling Activity Mathematical Object Initial Situation Tree Pruning Cultural Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Almeida, L. M. W. (2010). Um olhar semiótico sobre modelos e modelagem: metáforas como foco de análise. Zetetiké. FE-Unicamp, 18, número temático, 387–414.Google Scholar
  2. Ärlebäck, J. B., & Frejd, P. (2013). Modelling from the perspective of commognition – An emerging framework. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 47–56). Dordrecht: Springer.CrossRefGoogle Scholar
  3. Blomhøj, M., & Kjeldsen, T. H. (2011). Students’ reflections in mathematical modelling projects. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (ICTMA 14) (pp. 385–395). New York: Springer.CrossRefGoogle Scholar
  4. Borasi, R. (1986). On the nature of problems. Educational Studies in Mathematics, 17(2), 125–141.CrossRefGoogle Scholar
  5. Changeux, J. P., & Connes, A. (1992). Gedankenmaterie. Berlin: Springer.CrossRefGoogle Scholar
  6. Copel. (2011). Manual de Iluminação Pública. 1998. Accessed 25 Oct 2011.
  7. D’Ambrosio, U. (2009). Mathematical modeling: Cognitive, pedagogical, historical and political dimensions. Journal of Mathematical Modelling and Application, 1(6), 89–98.Google Scholar
  8. Erickson, D. K. (1999). A problem-based approach the mathematics instruction. Connecting Research to Teaching, 92(6), 516–521.Google Scholar
  9. Hersh, R. (1997). What is mathematics, really? London: Jonathan Cape.Google Scholar
  10. Hoffmann, M. H. G. (2004). Learning by developing knowledge networks. Zentralblatt für Didaktik der Mathematik, 36(6), 196–205.CrossRefGoogle Scholar
  11. Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah: Erlbaum.Google Scholar
  12. Peirce, C. S. (1972). Semiótica e Filosofia: textos escolhidos. São Paulo: Cultrix.Google Scholar
  13. Peirce, C. S. (1989). Escritos coligidos. São Paulo: Nova Cultural.Google Scholar
  14. Peirce, C. S. (1992). In N. Houser & C. Kloesel (Eds.), The essential Peirce (Vol. 1). Bloomington: Indiana University Press.Google Scholar
  15. Peirce, C. S. (1998). The essential Peirce (Vol. 2). Bloomington: Indiana University Press.Google Scholar
  16. Peirce, C. S. (2005). Semiótica. São Paulo: Perspectiva.Google Scholar
  17. Poggioli, L. (2001). Estrategias de resolución de problemas. Serie Enseñando a aprender. Caracas: Polar. Accessed 22 Apr 2012.
  18. Polya, G. (1971). How to solve it. Princeton: Princeton University Press.Google Scholar
  19. Searle, J. R. (1997). Die Konstruktion der gesellschaftlichen Wirklichen. Zur Ontologie sozialer Tatsachen. Hamburg: Rowolhlt.Google Scholar
  20. Steinbring, H. (2002). How do mathematical symbols acquire their meaning? – The methodology of the epistemology-based interaction research. In H. G. Weigand, N. Neill, A. Peter-Koop, K. Reiss, G. Törner, & B. Wollring (Eds.), Developments in mathematics education in German-speaking countries (pp. 113–123). Franzbecker: Hildesheim.Google Scholar
  21. Stillman, G. (2011). Appling metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (ICTMA 14) (pp. 165–180). New York: Springer.CrossRefGoogle Scholar
  22. Zawojewski, J. S., & Lesh, R. (2003). A models and modeling perspective on problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 317–336). Mahwah: Erlbaum.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lourdes Maria Werle de Almeida
    • 1
    Email author
  • Karina Alessandra Pessoa da Silva
    • 2
  1. 1.Department of MathematicsUniversity of LondrinaLondrinaBrazil
  2. 2.COMATFederal University of Technology of ParanáCornélio ProcópioBrazil

Personalised recommendations