Advertisement

Cultural, Social, Cognitive and Research Influences on Mathematical Modelling Education

  • Gloria Ann StillmanEmail author
  • Werner Blum
  • Maria Salett Biembengut
Part of the International Perspectives on the Teaching and Learning of Mathematical Modelling book series (IPTL)

Abstract

This contribution from the ICTMA community on the latest in research and teaching ideas in the area of mathematical modelling and applications education differs from previous volumes in that there is a much stronger emphasis on social and cultural influences on modelling education because of the location of the preceding conference in Brazil. However, another point of difference is the number of chapters that are influenced by cognitive perspectives as there are strong research teams taking this perspective internationally. This chapter situates the work in this volume within the field which has led to much research and evaluative studies in the last decade.

Keywords

Global Navigation Satellite System Global Navigation Satellite System Modelling Activity Pedagogical Content Knowledge Modelling Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andresen, M., & Petersen, A. (2011). Modelling chemical equilibrium in school mathematics with technology. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 519–528). New York: Springer.Google Scholar
  2. Antonius, S. (2007). Modelling based project examination. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 409–416). New York: Springer.Google Scholar
  3. Antonius, S., Haines, C., Jensen, T. H., & Niss, M., (with H. Burkhardt) (2007). Classroom activities and the teacher. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 295–308). New York: Springer.Google Scholar
  4. Aslaken, H., & Santosa, F. (2013). Technology issues. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 359–364). Cham: Springer.Google Scholar
  5. Barbosa, J. (2007). Teacher-student interactions in mathematical modelling. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 232–240). Chichester: Horwood.Google Scholar
  6. Bernstein, B. (1990). Class, codes and control: Vol. 4. The structuring of pedagogic discourse. London: Routledge.Google Scholar
  7. Berry, J. S., Burghes, D. N., Huntley, I. D., James, D. J. G., & Moscardini, A. O. (Eds.). (1986). Mathematical modelling methodology, models and micros. Chichester: Ellis Horwood.Google Scholar
  8. Blomhøj, M., & Jensen, H. T. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139.Google Scholar
  9. Blomhøj, M., & Højgaard Jensen, T. (2007). What’s all the fuss about competencies? In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 45–56). New York: Springer.Google Scholar
  10. Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.Google Scholar
  11. Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering & economics (pp. 222–231). London: Horwood.Google Scholar
  12. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68.Google Scholar
  13. Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York: Springer.Google Scholar
  14. Bourdieu, P. (1977). Outline of a theory of practice. Melbourne: Cambridge University Press.Google Scholar
  15. Briedenbach, W. (1969). Methodik des Mathematikunterrichts in Grund-und Hauptschulen. Band 1 – Rechnen. Hannover: Hermann Schroedel Verlag KG.Google Scholar
  16. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  17. Brown, J. P. (2015). Complexities of digital technology use and the teaching and learning of function. Computers & Education, 87, 112–122. doi:  10.1016/j.compedu.2015.03.022
  18. Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.Google Scholar
  19. Bruder, R., & Prescott, A. (2013). Research evidence on the benefits of IBL. ZDM: The International Journal on Mathematics Education, 45(6), 811–822.Google Scholar
  20. Caron, F., & Bélair, J. (2007). Exploring university students’ competencies in modelling. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 120–129). Chichester: Horwood.Google Scholar
  21. Chapman, O. (2009). Teachers’ conceptions and use of mathematical contextual problems in Canada. In L. Verschaffel, B. Greer, W. Van Dooren, & S. Mukhopadhyay (Eds.), Words and worlds: Modelling verbal descriptions of situations (pp. 227–244). Rotterdam: Sense.Google Scholar
  22. Crouch, R., & Haines, C. (2004). Mathematical modelling: Transitions between the real world and the mathematical world. International Journal of Mathematics Education in Science and Technology, 35(2), 197–206.Google Scholar
  23. D’Ambrosio, U. (1998). Ethnomathematics: The art or techniques of explaining and knowing (P. B. Scott, Trans.). Las Cruces: International Study Group on Ethnomathematics (Original work published 1990).Google Scholar
  24. Davis, P. J. (1991). Applied mathematics as a social instrument. In M. Niss, W. Blum, & I. Huntley (Eds.), Teaching of mathematical modelling and applications (pp. 1–9). Chichester: Ellis Horwood.Google Scholar
  25. De Bock, D., Van Dooren, W., Janssens, D., & Verschaffel, L. (2007). The illusion of linearity: From analysis to improvement. New York: Springer.Google Scholar
  26. de Oliveira, A. M. P., & Barbosa, J. C. (2013). Mathematical modelling, mathematical content and tensions in discourses. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 67–76). Dordrecht: Springer.Google Scholar
  27. Dewey, J. (1916). Democracy and education. New York: Macmillan.Google Scholar
  28. Dewey, J. (1917). The need for a recovery of philosophy. In J. Dewey (Ed.), Creative intelligence: Essays in the pragmatic attitude (pp. 3–69). New York: Holt.Google Scholar
  29. Durkheim, E. (1982). The rules of sociological method (W. D. Halls, Trans.). New York: Free Press.Google Scholar
  30. English, L. D. (2002). Setting an agenda for international research in mathematics education. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 3–19). New York: Routledge.Google Scholar
  31. English, L. D. (2013). Complex modelling in the primary and middle school years: An interdisciplinary approach. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 491–505). Dordrecht: Springer.Google Scholar
  32. Freire, P. (2000). Pedagogy of the oppressed. New York: Continuum.Google Scholar
  33. Frejd, P. (2013). Modes of modelling assessment – A literature review. Educational Studies in Mathematics Education, 84(3), 413–438.Google Scholar
  34. Galbraith, P. (2007a). Assessment and evaluation – Overview. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 405–408). New York: Springer.Google Scholar
  35. Galbraith, P. (2007b). Dreaming a ‘possible dream’: More windmills to conquer. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 44–62). Chichester: Horwood.Google Scholar
  36. Galbraith, P. (2013). From conference to community: An ICTMA journey–The Ken Houston Inaugural Lecture. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 27–43). Dordrecht: Springer.Google Scholar
  37. Galbraith, P. L., & Clatworthy, N. J. (1990). Beyond standard models – Meeting the challenge of modelling. Educational Studies in Mathematics, 21(2), 137–163.Google Scholar
  38. Galbraith, P., Stillman, G., Brown, J., & Edwards, I. (2007). Facilitating middle secondary modelling competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 130–140). Chichester: Ellis Horwood.Google Scholar
  39. Gibson, J. J. (1977). The theory of affordance. In R. Shaw & J. Bransford (Eds.), Perceiving, acting and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale: Erlbaum.Google Scholar
  40. Giroux, H. (1988). Teachers as intellectuals: Toward a critical pedagogy of learning. Westport: Bergin and Garvey Press.Google Scholar
  41. Goos, M. (1998). Technology as a tool for transforming mathematical tasks. In P. Galbraith, W. Blum, G. Booker, & I. D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 103–113). Chichester: Horwood.Google Scholar
  42. Greefrath, G., & Leuders, T. (2013). Verbrauch im Haushalt – Schätzen und Überschlagen. In S. Prediger, B. Barzel, S. Hussmann, & T. Leuders (Eds.), Mathewerkstatt (pp. 5–22). Berlin: Cornelsen.Google Scholar
  43. Haines, C., & Izard, J. (1995). Assessment in context for mathematical modelling. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 131–149). Yorklyn: Water Street Mathematics.Google Scholar
  44. Haines, C., Izard, J., & Le Masurier, D. (1993). Modelling intensions realised: Assessing the full range of developed skills. In T. Breiteig, I. Huntley, & G. Kaiser-Messmer (Eds.), Teaching and learning mathematics in context (pp. 200–211). Chichester: Horwood.Google Scholar
  45. Haines, C., Crouch, R., & Davies, J. (2001). Understanding students’ modelling skills. In J. F. Matos, W. Blum, K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education: Applications in science and technology (pp. 366–380). Chichester: Ellis Horwood.Google Scholar
  46. Hein, N., & Biembengut, M. (2006). Modelaje matemático como método de investigación en clases de matemáticas. In M. Murillo (Ed.), Memorias del V Festival Internacional de Matemática (pp. 1–25). Puntarenas: Colegio Universitario de Puntarenas.Google Scholar
  47. Henn, W.-H. (1998). The impact of computer algebra systems on modelling activities. In P. Galbraith, W. Blum, G. Booker, & I. D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 115–123). Chichester: Horwood.Google Scholar
  48. Henning, H., & Keune, M. (2007). Levels of modelling competencies. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 225–232). New York: Springer.Google Scholar
  49. Hestenes, D. (2010). Modeling theory for math and science education. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modelling competencies (pp. 13–41). New York: Springer.Google Scholar
  50. Højgaard Jensen, T. (2007). Assessing mathematical modelling competency. In C. P. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 155–164). Chichester: Horwood.Google Scholar
  51. Houston, K., & Neil, N. (2003). Assessing modelling skills. In S. Lamon, W. Parker, & K. Houston (Eds.), Mathematical modelling: A way of life (pp. 165–178). Chichester: Horwood.Google Scholar
  52. Izard, J., Haines, C., Crouch, R., Houston, K., & Neill, N. (2003). Assessing the impact of teaching mathematical modelling. In S. Lamon, W. Parker, & K. Houston (Eds.), Mathematical modelling: A way of life (pp. 165–178). Chichester: Horwood.Google Scholar
  53. Jablonka, E. (2007). The relevance of modelling and applications: Relevant to whom and for what purposes? In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 193–200). New York: Springer.Google Scholar
  54. Jacobs, H. R. (1994). Mathematics: A human endeavour (3rd ed.). New York: W.H. Freeman.Google Scholar
  55. Julie, C. (2002). Making relevance relevant in mathematics teacher education. Proceedings of the 2nd international conference on the teaching of mathematics (at the undergraduate level). Hoboken: Wiley.Google Scholar
  56. Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics (pp. 110–119). Chichester: Ellis Horwood.Google Scholar
  57. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM: The International Journal on Mathematics Education, 38(3), 302–310.Google Scholar
  58. Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning mathematical modelling. New York: Springer.Google Scholar
  59. Kaiser, G., Kooj, v. d. H., & Wake, G. (2013). Educational interfaces between mathematics and industry at school level. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 263–270). Cham: Springer.Google Scholar
  60. Kaufman, D., Moss, D. M., & Osborn, T. A. (Eds.). (2003). Beyond the boundaries: A transdisciplinary approach to learning and teaching. Westport: Praeger.Google Scholar
  61. Larson, C. (2010). Modeling and quantitative reasoning: The summer jobs problem. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modelling competencies (pp. 111–118). New York: Springer.Google Scholar
  62. Lesh, R., & Doerr, H. (Eds.). (2003). Beyond constructivism: A models and modeling perspective. Mahwah: Erlbaum.Google Scholar
  63. Lesh, R., & English, L. (2005). Trends in the evolution of models & modeling perspectives on mathematical learning and problem solving. ZDM: The International Journal on Mathematics Education, 37(6), 487–489.Google Scholar
  64. Lesh, R., Galbraith, P. L., Haines, C. R., & Hurford, A. (Eds.). (2010). Modeling students’ mathematical modelling competencies. New York: Springer.Google Scholar
  65. Li, T. (2013). Mathematical modeling education is the most important educational interface between mathematics and industry. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 51–58). Cham: Springer.Google Scholar
  66. Maaß, K. (2004). Mathematisches Modellieren im Unterricht-Ergebnisse einer empirischen Studie. Hildesheim, Berlin: Franzbecker.Google Scholar
  67. Maaß, K. (2006). What do we mean by modeling competencies? ZDM, 38(2), 113–142.Google Scholar
  68. Maaß, K. (2007). Modelling in class: What do we want the students to learn. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering & economics (pp. 63–78). London: Horwood.Google Scholar
  69. Marton, F., & Tsui, A. (2004). Classroom discourse and the space of learning. Mahwah: Erlbaum.Google Scholar
  70. Matsuzaki, A. (2004). ‘Rub’ and ‘stray’ of mathematical modelling. In H.-W. Henn, & W. Blum (Eds.), ICMI study 14: Applications and modelling in mathematics education (Pre-conference vol., pp. 181–186). Dortmund: University of Dortmund.Google Scholar
  71. Matsuzaki, A., & Saeki, A. (2013). Evidence of a dual modelling cycle: Through a teaching practice example for undergraduate school student. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 195–205). New York: Springer.Google Scholar
  72. Mellin-Olsen, S. (1987). The politics of mathematics education. Dordrecht: Reidel.Google Scholar
  73. Mercer, N. (2000). Words & minds. London: Routledge.Google Scholar
  74. Michelsen, C., & Sriraman, B. (2009). Does interdisciplinary instruction raise students’ interest in mathematics and the subjects of the natural sciences? ZDM: The International Journal on Mathematics education, 41(1–2), 231–244.Google Scholar
  75. Moscardini, A. O., Prior, D. D., & Cross, M. (1984). On the use of simulation software in higher educational courses. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. 339–355). Chichester: Ellis Horwood.Google Scholar
  76. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Author. http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
  77. Niss, M. (1992). Applications and modelling in school mathematics: Directions for future development. Roskilde: IMFUFA, Roskilde University Centre.Google Scholar
  78. Niss, M. (2001). Issues and problems of research on the teaching and learning of applications and modelling. In J. F. Matos, W. Blum, S. K. Houston, & S. P. Carreira (Eds.), Modelling and mathematics education. Chichester: Horwood.Google Scholar
  79. Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), Third Mediterranean conference on mathematical education (pp. 115–1240). Athens: Hellenic Mathematical Society and Cyprus Mathematical Society.Google Scholar
  80. Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 43–59). New York: Springer.Google Scholar
  81. Niss, M., & Højgaard, T. (Eds.). (2011). Competencies and mathematical learning. Ideas and inspiration for the development of mathematics teaching and learning in Denmark (English translation of original 2002). Roskilde University: IMFUFA. http://pure.au.dk/portal/files/41669781/THJ11_MN_KOM_in_english.pdf
  82. Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In Modelling and applications in mathematics education (pp. 3–32). New York: Springer.Google Scholar
  83. Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge: Cambridge University Press.Google Scholar
  84. Palm, T. (2008). Impact of authenticity on sense making in word problem solving. Educational Studies in Mathematics, 67(1), 37–58.Google Scholar
  85. Pead, D., Ralph, B., & Muller, E. (2007). Uses of technologies in learning mathematics through modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 309–318). New York: Springer.Google Scholar
  86. Prior, D. E., & Moscardini, A. O. (1984). Modelling growth and development. In J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, & A. O. Moscardini (Eds.), Teaching and applying mathematical modelling (pp. 290–305). Chichester: Ellis Horwood.Google Scholar
  87. Rodríguez, R. (2010). Aprendizaje y enseñanza de la modelación: el caso de las ecuaciones diferenciales. Revista Latinoamericana de Matemática Educativa, 13(4–1), 191–210.Google Scholar
  88. Rosa, M., & Orey, D. (2013). Ethnomodelling as a research lens on ethnomathematics and modelling. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 117–127). Dordrecht: Springer.Google Scholar
  89. Runesson, U. (2005). Beyond discourse and interaction. Variation: A critical aspect for teaching and learning mathematics. Cambridge Journal of Education, 35(1), 69–87.Google Scholar
  90. Saeki, A., & Matsuzaki, A. (2013). Dual modelling cycle framework for responding to the diversities of modellers. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 89–99). Dordrecht: Springer.Google Scholar
  91. Salling Olesen, H. (2008). Workplace learning. In P. Jarvis (Ed.), The Routledge international handbook of lifelong learning (pp. 114–128). London: Routledge Mental Health.Google Scholar
  92. Sebeok, T. A. (1991). Semiotics in the United States. Bloomington: Indiana University Press.Google Scholar
  93. Shaw, J., & Puckett-Cliatt, M. (1989). Developing measurement sense. In P. Trafton & A. Schule (Eds.), New directions for elementary school mathematics: 1989 yearbook (pp. 149–155). Reston: National Council of Teachers of Mathematics.Google Scholar
  94. Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht: Kluwer.Google Scholar
  95. Sriraman, B., & English, L. (Eds.). (2010). Theories of mathematics education: Seeking new frontiers. New York: Springer.Google Scholar
  96. Stillman, G. (1998). The emperor’s new clothes? Teaching and assessment of mathematical applications at the senior secondary level. In P. Galbraith, W. Blum, G. Booker, & I. D. Huntley (Eds.), Mathematical modelling: Teaching and assessment in a technology-rich world (pp. 243–253). Chichester: Ellis Horwood.Google Scholar
  97. Stillman, G. (2000). Impact of prior knowledge of task context on approaches to applications tasks. Journal of Mathematical Behavior, 19(3), 333–361.Google Scholar
  98. Stillman, G. (2001). Development of a new research tool: The cognitive demand profile. In J. Bobis, M. Mitchelmore, & B. Perry (Eds.), Proceedings of the twenty fourth annual conference of the Mathematics Education Research Group of Australasia Incorporated (Vol. 2, pp. 459–467). Sydney: MERGA.Google Scholar
  99. Stillman, G. (2002). Assessing higher order mathematical thinking through applications. Ph.D. thesis, The University of Queensland, BrisbaneGoogle Scholar
  100. Stillman, G. (2004). Strategies employed by upper secondary students for overcoming or exploiting conditions affecting accessibility of applications tasks. Mathematics Education Research Journal, 16(1), 41–72.Google Scholar
  101. Stillman, G. (2010). Implementing applications and modelling in secondary school: Issues for teaching and learning. In B. Kaur & J. Dindyal (Eds.), Mathematical applications and modelling (pp. 300–322). Singapore: World Scientific.Google Scholar
  102. Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks in secondary school. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165–180). New York: Springer.Google Scholar
  103. Stillman, G., & Brown, J. P. (2014). Evidence of Implemented Anticipation in mathematizing by beginning modellers. Mathematics Education Research Journal, 26(4), 763–789.Google Scholar
  104. Stillman, G., Brown, J., & Galbraith, P. (2010). Identifying challenges within phases of mathematical modeling activities in Year 9. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical modeling competencies (pp. 385–398). New York: Springer.Google Scholar
  105. Stillman, G., & Galbraith, P. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157–194.Google Scholar
  106. Stillman, G., & Galbraith, P. (2011). Evolution of applications and modelling in a senior secondary curriculum. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 689–699). New York: Springer.Google Scholar
  107. Stillman, G. A., Kaiser, G., Blum, W., & Brown, J. P. (2013). Teaching mathematical modelling: Connecting to research and practice. Dordrecht: Springer.Google Scholar
  108. Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. In J. L. Plass, R. Moreno, & R. Brüken (Eds.), Cognitive load theory (pp. 29–47). New York: Cambridge University Press.Google Scholar
  109. Tall, D. (2004). Introducing three worlds of mathematics. For the Learning of Mathematics, 23(3), 29–33.Google Scholar
  110. Tikhomirov, O. K. (1981). The psychological consequences of computerization. In J. V. Wertsch (Ed.), The concept of activity in Soviet psychology (pp. 256–278). Armonk: M. E. Sharpe.Google Scholar
  111. Törner, G., Schoenfeld, A. H., & Reiss, K. M. (2007). Problem solving around the world: Summing up the state of the art. ZDM: The International Journal on Mathematics Education, 39(5/6).Google Scholar
  112. Treilibs, V. (1979). Formulation processes in mathematical modelling. Unpublished Master of Philosophy, University of Nottingham.Google Scholar
  113. Valsiner, J. (1997). Culture and the development of children’s action (2nd ed.). New York: Wiley.Google Scholar
  114. Villa-Ochoa, J. A., & López, C. M. J. (2011). Sense of reality through mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 701–711). New York: Springer.Google Scholar
  115. Vos, P. (2011). What is ‘authentic’ in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). New York: Springer.Google Scholar
  116. Widjaja, W. (2013). Building awareness of mathematical modelling in teacher education: A case study in Indonesia. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 583–593). Dordrecht: Springer.Google Scholar
  117. Wijaya, A., Van den Heuvel-Ranhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context-based PISA mathematics tasks: An Analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584.Google Scholar
  118. Wineburg, S., & Grossman, P. (Eds.). (2000). Interdisciplinary curriculum: Challenges to implementation. New York: Teachers College Press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Gloria Ann Stillman
    • 1
    Email author
  • Werner Blum
    • 2
  • Maria Salett Biembengut
    • 3
  1. 1.Education VIC, Faculty of Education & ArtsAustralian Catholic UniversityBallaratAustralia
  2. 2.Institute of MathematicsUniversity of KasselKasselGermany
  3. 3.Pontificia Universidade Cátólica do Rio Grande do SulBlumenauBrazil

Personalised recommendations