Advertisement

Entomopathogenic Nematodes in the Soil Environment: Distributions, Interactions and the Influence of Biotic and Abiotic Factors

  • Robin J. Stuart
  • Mary E. Barbercheck
  • Parwinder S. Grewal
Part of the Sustainability in Plant and Crop Protection book series (SUPP)

Abstract

Entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are important agents for the biological control of soil insect pests in natural and managed ecosystems (Denno, Gruner, & Kaplan, 2008; Grewal, Ehlers, & Shapiro-Ilan, 2005; Lacey & Georgis, 2012). However, like most soil organisms, our knowledge of their activities is relatively limited compared to above ground organisms. Indeed, research on soil biota has long been a challenging aspect of modern ecology because of the inherent difficulties of sampling, manipulating, and otherwise investigating below ground processes (Brown & Gange, 1990; Fierer, Strickland, Liptzin, Bradford, & Cleveland, 2009). Progress is being made with EPNs but we are still a long way from the comprehensive understanding of their soil biology that is required if they are to fulfill their rich potential as manageable biological control agents in cultivated ecosystems. Twenty–five years ago Hominick and Reid (1990) stated: “We are almost completely ignorant of the population biology of entomopathogenic nematodes, yet such information is fundamental to understanding their persistence, distribution, effect on insect populations, and to the development of predictive models for control programs.” Subsequently, researchers have been chipping away at this problem, more intensive field studies have been conducted, models have been developed for various processes, and molecular techniques have begun providing new ways of exploring fundamental issues (Bai, Adams, Ciche, Clifton, Gaugler, et al., 2013; Campos-Herrera, Barbercheck, Hoy, & Stock, 2012; Campos-Herrera, Pathak, El-Borai, Stuart, Gutiérrez, et al., 2013; Stuart, Barbercheck, Grewal, Taylor, & Hoy, 2006) but much remains to be done. This paper reviews some aspects of the distribution of EPNs in the soil environment, what we know about their interactions, and the various biotic and abiotic factors that influence them.

Keywords

Natural Enemy Conventional Tillage Symbiotic Bacterium Entomopathogenic Nematode Infective Juvenile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackenbrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control, 38, 4–21.Google Scholar
  2. Adl, S. M. (2003). The ecology of soil decomposition. Wallingford, UK: CABI.Google Scholar
  3. Akhurst, R. J., & Brooks, W. M. (1984). The distribution of entomophilic nematodes (Heterorhabditidae and Steinernematidae) in North Carolina. Journal of Invertebrate Pathology, 44, 140–145.Google Scholar
  4. Alatorre-Rosas, R., & Kaya, H. K. (1990). Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. Journal of Invertebrate Pathology, 55, 179–188.Google Scholar
  5. Alatorre-Rosas, R., & Kaya, H. K. (1991). Interactions between two entomopathogenic nematode species in the same host. Journal of Invertebrate Pathology, 57, 1–6.Google Scholar
  6. Ali, J. G., Alborn, H. T., & Stelinski, L. L. (2010). Subterranean herbivore–induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. Journal of Chemical Ecology, 36, 361–368.PubMedGoogle Scholar
  7. Ali, J. G., Campos-Herrera, R., Alborn, H. T., Duncan, L. W., & Stelinski, L. L. (2013). Sending mixed messages: A trophic cascade produced by a belowground herbivore–induced cue. Journal of Chemical Ecology, 39(8), 1140–1147.PubMedGoogle Scholar
  8. Alsaiyah, M. A. M., Ebssa, L., Zenner, A., O’Callaghan, K. M., & Griffin, C. T. (2009). Sex ratios and sex–biased infection behaviour in the entomopathogenic nematode genus Steinernema. International Journal for Parasitology, 39, 725–734.PubMedGoogle Scholar
  9. Amarasinghe, L. D., Hominick, W. M., Briscoe, B. R., & Reid, A. P. (1994). Occurrence and distribution of entomopathogenic nematodes in Sri Lanka. Journal of Helminthology, 68(4), 277–286.Google Scholar
  10. Andrén, O., & Lagerlöf, J. (1983). Soil fauna (microarthropods, enchytraeids, nematodes) in Swedish agricultural cropping systems. Acta Agriculturae Scandinavica, 33, 33–52.Google Scholar
  11. Ansari, M. A., Shah, F. A., & Butt, T. M. (2008). Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomologia Experimentalis et Applicata, 129(3), 340–347.Google Scholar
  12. Bai, X., Adams, B. J., Ciche, T. A., Clifton, S., Gaugler, R., Kim, K., et al. (2013). A lover and a fighter: The genome sequence of an entomopathogenic nematode. PloS One, 8(7), e69618.PubMedCentralPubMedGoogle Scholar
  13. Bal, H. K., Michael, A., & Grewal, P. S. (2014). Genetic selection of the ambush foraging entomopathogenic nematode Steinernema carpocapsae for enhanced dispersal and its associated trade–offs. Evolutionary Ecology, 28, 923–939.Google Scholar
  14. Bal, H. K., Taylor, R. A. J., & Grewal, P. S. (2014). Ambush foraging entomopathogenic nematodes employ sprinting emigrants for long distance dispersal in the absence of hosts. Parasitology, 100, 422–432.Google Scholar
  15. Barbercheck, M. E. (1992). Effect of soil physical factors on biological control agents of soil insect pests. Florida Entomologist, 75, 539–548.Google Scholar
  16. Barbercheck, M. E. (1993). Tritrophic level effects on entomopathogenic nematodes. Environmental Entomology, 22, 1166–1171.Google Scholar
  17. Barbercheck, M. E., & Kaya, H. K. (1990). Interactions between Beauveria bassiana and the entomogenous nematodes, Steinernema feltiae and Heterorhabditis heliothidis. Journal of Invertebrate Pathology, 55, 225–234.Google Scholar
  18. Barbercheck, M. E., & Kaya, H. K. (1991a). Effect of host condition and soil texture on host finding by the entomogenous nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) and Steinernema carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology, 20, 582–589.Google Scholar
  19. Barbercheck, M. E., & Kaya, H. K. (1991b). Competitive interactions between entomopathogenic nematodes and Beauveria bassiana (Deuteromycotina: Hyphomycetes) in soil borne larvae of Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 20, 707–712.Google Scholar
  20. Barbercheck, M. E., Wang, J., & Hirsh, I. S. (1995). Host plant effects on entomopathogenic nematodes. Journal of Invertebrate Pathology, 66, 169–177.Google Scholar
  21. Barbosa, P., & Benrey, B. (1998). The influence of plants on insect parasitoids: Implications for conservation biological control. In P. Barbosa (Ed.), Conservation biological control (pp. 235–254). San Diego, CA: Academic.Google Scholar
  22. Bashey, F., Hawlena, H., & Lively, C. M. (2013). Alternative paths to success in a parasite community: Within–host competition can favor higher virulence or direct interference. Evolution, 67(3), 900–907.PubMedGoogle Scholar
  23. Bashey, F., Young, K., Hawlena, H., & Lively, C. M. (2012). Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. Journal of Evolutionary Biology, 25(3), 431–437.PubMedGoogle Scholar
  24. Baur, M. E., Kaya, H. K., & Strong, D. R. (1998). Foraging ants as scavengers on entomopathogenic nematode–killed insects. Biological Control, 12, 231–236.Google Scholar
  25. Beavers, J. B., McCoy, C. W., & Kaplan, D. T. (1983). Natural enemies of subterranean Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae in Florida. Environmental Entomology, 12, 840–843.Google Scholar
  26. Bednarek, A., & Gaugler, R. (1997). Compatibility of soil amendments with entomopathogenic nematodes. Journal of Nematology, 29, 220–227.PubMedCentralPubMedGoogle Scholar
  27. Bellows, T. S. (1999). Controlling soil–borne plant pathogens. In T. S. Bellows & T. W. Fisher (Eds.), Handbook of biological control (pp. 699–711). San Diego, CA: Academic.Google Scholar
  28. Bilgrami, A. L., Gaugler, R., Shapiro-Ilan, D. I., & Adams, B. J. (2006). Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology, 8(3), 397–410.Google Scholar
  29. Bilgrami, A. L., & Jairajpuri, M. S. (1989a). Predatory abilities of Mononchoides longicaudatus and M. fortidens (Nematoda: Diplogasterida) and factors influencing predation. Nematologica, 35, 475–488.Google Scholar
  30. Bilgrami, A. L., & Jairajpuri, M. S. (1989b). Resistance of prey to predation and strike rate of the predators Mononchoides longicaudatus and M. fortidans (Nematoda: Diplogasterida). Revue de Nematologie, 12, 45–49.Google Scholar
  31. Blouin, M. S., Liu, J., & Berry, R. E. (1999). Life cycle variation and the genetic structure of nematode populations. Heredity, 8, 253–259.Google Scholar
  32. Boemare, N. (2002). Biology, taxonomy, and systematics of Photorhabdus and Xenorhabdus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 35–56). New York: CABI.Google Scholar
  33. Bohan, D. A., & Hominick, W. M. (1995). Intra–population infectious structure and temporal variation in Steinernema feltiae. In C. T. Griffin, R. L. Gwynn, & J. P. Masson (Eds.), Ecology and transmission strategies of entomopathogenic nematodes (pp. 83–94). Luxembourg: European Commission.Google Scholar
  34. Bohan, D. A., & Hominick, W. M. (1996). Investigations on the presence of an infectious proportion amongst populations of Steinernema feltiae (site 76 strain) infective stages. Parasitology, 112, 113–118.Google Scholar
  35. Bohan, D. A., & Hominick, W. M. (1997a). Sex and the dynamics of infection in the entomopathogenic nematode Steinernema feltiae. Journal of Helminthology, 71, 197–201.Google Scholar
  36. Bohan, D. A., & Hominick, W. M. (1997b). Long–term dynamics of infectiousness within the infective–state pool of the entomopathogenic nematode Steinernema feltiae (site 76 strain) Filipjev. Parasitology, 114, 301–308.Google Scholar
  37. Brown, I. M., & Gaugler, R. (1997). Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica, 43, 363–375.Google Scholar
  38. Brown, I., Lovett, B., Grewal, P. S., & Gaugler, R. (2002). Latent infection: A low temperature survival strategy in steinernematid nematodes. Journal of Thermal Biology, 27, 531–539.Google Scholar
  39. Brown, V. K., & Gange, A. C. (1990). Insect herbivory below ground. Advances in Ecological Research, 20, 1–58.Google Scholar
  40. Brust, G. E. (1991). Augmentation of an endemic entomogenous nematode by agroecosystem manipulation for the control of a soil pest. Agriculture, Ecosystems & Environment, 36, 175–184.Google Scholar
  41. Burman, M., & Pye, A. E. (1980). Neoaplectana carpocapsae: Movements of nematode populations on a thermal gradient. Experimental Parasitology, 49(2), 258–265.PubMedGoogle Scholar
  42. Byers, J. A., & Poinar, G. O., Jr. (1982). Location of insect hosts by the nematode, Neoaplectana carpocapsae, in response to temperature. Behaviour, 79(1), 1–10.Google Scholar
  43. Cabanillas, H. E., & Raulston, J. R. (1994). Evaluation of the spatial pattern of Steinernema riobravis in corn plots. Journal of Nematology, 26(1), 25–31.PubMedCentralPubMedGoogle Scholar
  44. Cakmak, I., Hazir, S., Ulug, D., & Karagoz, M. (2013). Olfactory response of Sancassania polyphyllae (Acari: Acaridae) to its phoretic host larva killed by the entomopathogenic nematode, Steinernema glaseri (Rhabditida: Steinernematidae). Biological Control, 65, 212–217.Google Scholar
  45. Campbell, J. F., Koppenhöfer, A. M., Kaya, H. K., & Chinnasri, B. (1999). Are there temporarily non–infectious dauer stages in entomopathogenic nematode populations: A test of the phased infectivity hypothesis. Parasitology, 118, 499–508.PubMedGoogle Scholar
  46. Campbell, J. F., Lewis, E., Yoder, F., & Gaugler, R. (1995). Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) seasonal population dynamics and impact on insect populations in turfgrass. Biological Control, 5, 598–606.Google Scholar
  47. Campbell, J. F., Lewis, E., Yoder, F., & Gaugler, R. (1996). Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) spatial distribution in turfgrass. Parasitology, 113, 473–482.PubMedGoogle Scholar
  48. Campbell, J. F., Orza, G., Yoder, F., Lewis, E., & Gaugler, R. (1998). Spatial and temporal distribution of endemic and released entomopathogenic nematode populations in turfgrass. Entomologia Experimentalis et Applicata, 86, 1–11.Google Scholar
  49. Campos-Herrera, R., Barbercheck, M., Hoy, C. W., & Stock, S. P. (2012). Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44(2), 162–176.PubMedCentralPubMedGoogle Scholar
  50. Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2012). Wide interguild relationships among entomopathogenic and free–living nematodes in soil as measured by real time qPCR. Journal of Invertebrate Pathology, 111, 126–135.PubMedGoogle Scholar
  51. Campos-Herrera, R., Escuer, M., Labrador, S., Robertson, L., Barrios, L., & Gutiérrez, C. (2007). Distribution of the entomopathogenic nematodes from La Rioja (Northern Spain). Journal of Invertebrate Pathology, 95, 125–139.PubMedGoogle Scholar
  52. Campos-Herrera, R., Gómez-Ros, J. M., Escuer, M., Cuadra, L., Barrios, L., & Gutiérrez, C. (2008). Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biology and Biochemistry, 40(6), 1474–1484.Google Scholar
  53. Campos-Herrera, R., Jaffuel, G., Chiriboga, X., Blanco-Perez, R., Fesselet, M., Puza, V., et al. (2015). Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant and Soil, 389, 237–255.Google Scholar
  54. Campos-Herrera, R., Johnson, E. G., El-Borai, F. E., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2011). Long–term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real–time PCR assays. Annals of Applied Biology, 158, 55–68.Google Scholar
  55. Campos-Herrera, R., Pathak, E., El-Borai, F. E., Schumann, A., Abd-Elgawad, M. M. M., & Duncan, L. W. (2013). New citriculture system suppresses native and augmented entomopathogenic nematodes. Biological Control, 66, 183–194.Google Scholar
  56. Campos-Herrera, R., Pathak, E., El-Borai, F. E., Stuart, R. J., Gutiérrez, C., Rodríguez-Martín, J. A., et al. (2013). Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biology and Biochemistry, 66, 163–174.Google Scholar
  57. Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., et al. (2002). The interaction between predation and competition: a review and synthesis. Ecology Letters, 5(2), 302–315.Google Scholar
  58. Choo, H. Y., & Kaya, H. K. (1991). Influence of soil texture and presence of roots on host finding by Heterorhabditis bacteriophora. Journal of Invertebrate Pathology, 58, 279–280.Google Scholar
  59. Coleman, D. C., & Crossley, D. A., Jr. (1996). Fundamentals of soil ecology. San Diego, CA: Academic.Google Scholar
  60. Connell, J. (1980). Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131–138.Google Scholar
  61. Constant, P., Marchay, L., Fischer-Le Saux, M., Briand-Panoma, S., & Mauleon, H. (1998). Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Guadalupe islands. Fundamental and Applied Nematology, 21, 667–672.Google Scholar
  62. Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. St. Paul, MN: American Phytopathological Society.Google Scholar
  63. Demarta, D., Hibbard, B. E., Bohn, M. O., & Hiltpold, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122, 32–39.PubMedGoogle Scholar
  64. Denno, R. F., Gruner, D. S., & Kaplan, I. (2008). Potential for entomopathogenic nematodes in biological control: A meta–analytical synthesis and insights from trophic cascade theory. Journal of Nematology, 40(2), 61–72.PubMedCentralPubMedGoogle Scholar
  65. Dillman, A. R., Chaston, J. M., Adams, B. J., Ciche, T. A., Goodrich-Blair, H., Stock, S. P., et al. (2012). An entomopathogenic nematode by any other name. PLoS Pathogens, 8, e1002527.PubMedCentralPubMedGoogle Scholar
  66. Dillman, A. R., Guillermin, M. L., Lee, J. H., Kim, B., Sternberg, P. W., & Hallem, E. A. (2012). Olfaction shapes host–parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences, 109(35), E2324–E2333.Google Scholar
  67. Dolinski, C., Choo, H. Y., & Duncan, L. W. (2012). Grower acceptance of entomopathogenic nematodes: Case studies on three continents. Journal of Nematology, 44, 226–235.PubMedCentralPubMedGoogle Scholar
  68. Dugaw, C. J., Hastings, A., Preisser, E. L., & Strong, D. R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 66, 583–594.PubMedGoogle Scholar
  69. Duncan, L. W., Dunn, D. C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free–living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35, 187–193.PubMedCentralPubMedGoogle Scholar
  70. Duncan, L. W., Dunn, D. C., & McCoy, C. W. (1996). Spatial patterns of entomopathogenic nematodes in microcosms: Implications for laboratory experiments. Journal of Nematology, 28, 252–258.PubMedCentralPubMedGoogle Scholar
  71. Duncan, L. W., Genta, J. G., Zellers, J., Fares, A., & Stansly, P. A. (2001). Efficacy of Steinernema riobrave against larvae of Diaprepes abbreviatus in Florida soils of different texture. Nematropica, 31, 130.Google Scholar
  72. Duncan, L. W., Graham, J. H., Dunn, D. C., Zellers, J., McCoy, C. W., & Nguyen, K. (2003). Incidence of endemic entomopathogenic nematodes following application of Steinernema riobrave for control of Diaprepes abbreviatus. Journal of Nematology, 35, 178–186.PubMedCentralPubMedGoogle Scholar
  73. Duncan, L. W., Graham, J. H., Zellers, J., Bright, D., Dunn, D. C., El-Borai, F. E., et al. (2007). Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure–mulched soil. Journal of Nematology, 39(2), 176–189.PubMedCentralPubMedGoogle Scholar
  74. Duncan, L. W., & McCoy, C. W. (2001). Hydraulic lift increases herbivory by Diaprepes abbreviatus larvae and persistence of Steinernema riobrave in dry soil. Journal of Nematology, 33, 142–146.PubMedCentralPubMedGoogle Scholar
  75. Duncan, L. W., Stuart, R. J., El-Borai, F. E., Campos-Herrera, R., Pathak, E., Giurcanu, M., et al. (2013). Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biological Control, 64, 26–36.Google Scholar
  76. Dutilleul, P., & Legendre, P. (1993). Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus a statistical concept. Oikos, 66, 152–171.Google Scholar
  77. Efron, D., Nestel, D., & Glazer, I. (2001). Spatial analysis of entomopathogenic nematodes and insect hosts in a citrus grove in a semi–arid region in Israel. Environmental Entomology, 30, 254–261.Google Scholar
  78. Ehlers, R.–. U., Deseö, K. V., & Stackebrandt, E. (1991). Identification of Steinernema spp. (Nematoda) and their symbiotic bacteria Xenorhabdus spp. from Italian and German soils. Nematologia, 37, 360–366.Google Scholar
  79. Ekmen, Z. I., Hazir, S., Cakmak, I., Ozer, N., Karagoz, M., & Kaya, H. K. (2010). Potential negative effects on biological control by Sancassania polyphyllae (Acari: Acaridae) on an entomopathogenic nematode species. Biological Control, 54, 166–171.Google Scholar
  80. El-Borai, F. E., Campos-Herrera, R., Stuart, R. J., & Duncan, L. W. (2011). Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. Journal of Invertebrate Pathology, 106(3), 347–356.PubMedGoogle Scholar
  81. El-Borai, F. E., Stuart, R. J., Campos-Herrera, R., Pathak, E., & Duncan, L. W. (2012). Entomopathogenic nematodes, root weevil larvae, and dynamic interactions among soil texture, plant growth, herbivory, and predation. Journal of Invertebrate Pathology, 109(1), 134–142.PubMedGoogle Scholar
  82. Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non–host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.PubMedGoogle Scholar
  83. Epsky, N. D., & Capinera, J. L. (1994). Influence of herbivore diet on the pathogenesis of Steinernema carpocapsae (Nematoda: Steinernematidae). Environmental Entomology, 23, 487–491.Google Scholar
  84. Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous microarthropods as biotic mortality factors of entomopathogenic nematodes (Rhabditid, Steinernematidae and Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.Google Scholar
  85. Ettema, C. H. (1998). Soil nematode diversity: Species coexistence and ecosystem function. Journal of Nematology, 30, 159–169.PubMedCentralPubMedGoogle Scholar
  86. Ettema, C. H., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17(4), 177–183.Google Scholar
  87. Fairbairn, J. P., Fenton, A., Norman, R., & Hudson, P. J. (2000). Re–assessing the infection strategies of the entomopathogenic nematode Steinernema feltiae (Rhabditidae; Steinernematidae). Parasitology, 121, 211–216.PubMedGoogle Scholar
  88. Fenton, A., Magoolagan, L., Kennedy, Z., & Spencer, K. A. (2011). Parasite–induced warning coloration: A novel form of host manipulation. Animal Behaviour, 81(2), 417–422.Google Scholar
  89. Fenton, A., Norman, R., Fairbairn, J. P., & Hudson, P. J. (2000). Modeling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. Journal of Applied Ecology, 37, 309–320.Google Scholar
  90. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12, 1–12.Google Scholar
  91. Forst, S., & Clarke, D. (2002). Bacteria–nematode symbiosis. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 57–77). New York: CABI.Google Scholar
  92. Garcia Del Pino, F., & Palomo, A. (1996). Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Spanish soils. Journal of Invertebrate Pathology, 68, 84–90.PubMedGoogle Scholar
  93. Gassmann, A. J., Stock, S. P., Tabashnik, B. E., & Singer, M. S. (2010). Tritrophic effects of host plants on an herbivore–pathogen interaction. Annals of the Entomological Society of America, 103, 371–378.Google Scholar
  94. Gaugler, R., & Kaya, H. K. (1990). Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC.Google Scholar
  95. Gaugler, R., Lewis, E. E., & Stuart, R. J. (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 109, 483–489.Google Scholar
  96. Gaugler, R., Wang, Y., & Campbell, J. F. (1994). Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. Journal of Invertebrate Pathology, 64, 193–199.Google Scholar
  97. Ghally, S. E. (1995). Some factors affecting the activity and pathogenicity of Heterorhabditis heliothidis and Steinernema carpocapsae nematodes. Journal of the Egyptian Society of Parasitology, 25, 125–135.PubMedGoogle Scholar
  98. Gilmore, S. K., & Potter, D. A. (1993). Potential role of collembola as biotic mortality agents for entomopathogenic nematodes. Pedobiologia, 37, 30–38.Google Scholar
  99. Gilmore, S. K., & Raffensperger, E. M. (1970). Foods ingested by Tomocerus spp. (Collembola, Entomobryidae), in relation to habitat. Pedobiologia, 10, 135–140.Google Scholar
  100. Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology, 114, 597–604.PubMedGoogle Scholar
  101. Glazer, I. (2002). Survival biology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 169–187). Wallingford, UK: CABI.Google Scholar
  102. Glazer, I., Gaugler, R., & Segal, D. (1991). Genetics of the nematode Heterorhabditis bacteriophora HP88 strain: The diversity of beneficial traits. Journal of Nematology, 23, 324–333.PubMedCentralPubMedGoogle Scholar
  103. Glazer, I., Kozodoi, E., Salame, L., & Nestel, D. (1996). Spatial and temporal occurrence of natural populations of Heterorhabditis spp. (Nematoda: Rhabditida) in a semiarid region. Biological Control, 6, 130–136.Google Scholar
  104. Grant, J. A., & Villani, M. G. (2003). Soil moisture effects on entomopathogenic nematodes. Environmental Entomology, 32, 80–87.Google Scholar
  105. Greenwood, C. M., Barbercheck, M. E., & Brownie, C. (2011). Short term response of soil microinvertebrates to application of entomopathogenic nematode–infected insects in two tillage systems. Pedobiologia, 54, 177–186.Google Scholar
  106. Grewal, P. S. (2012). Entomopathogenic nematodes as tools in integrated pest management. In D. P. Abrol & U. Shankar (Eds.), Integrated pest management: Principles and practice (pp. 162–236). Wallingford, UK: CABI.Google Scholar
  107. Grewal, P. S., Ehlers, R.–. U., & Shapiro-Ilan, D. I. (Eds.). (2005). Nematodes as biocontrol agents. Wallingford, UK: CABI.Google Scholar
  108. Grewal, P. S., Gaugler, R., & Shupe, C. (1996). Rapid changes in thermal sensitivity of entomopathogenic nematodes in response to selection at temperature extremes. Journal of Invertebrate Pathology, 68, 65–73.PubMedGoogle Scholar
  109. Grewal, P. S., Gaugler, R., & Wang, Y. (1996). Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection. Annals of Applied Biology, 129, 335–341.Google Scholar
  110. Grewal, P. S., Grewal, S. K., Malik, V. S., & Klein, M. G. (2002). Differences in susceptibility of introduced and native white grub species to entomopathogenic nematodes from various geographic localities. Biological Control, 24, 230–237.Google Scholar
  111. Grewal, P. S., Lewis, E. E., Gaugler, R., & Campbell, J. F. (1994). Host finding behavior as a predictor of foraging strategy of entomopathogenic nematodes. Parasitology, 108, 207–215.Google Scholar
  112. Grewal, P. S., Lewis, E. E., & Gaugler, R. (1997). Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected hosts. Journal of Chemical Ecology, 23, 503–515.Google Scholar
  113. Grewal, P. S., Lewis, E. E., & Venkatachari, S. (1999). Allelopathy: A possible mechanism of suppression of plant–parasitic nematodes by entomopathogenic nematodes. Nematology, 1, 735–743.Google Scholar
  114. Grewal, P. S., Martin, W. R., Miller, R. W., & Lewis, E. E. (1997). Suppression of plant–parasitic nematode populations in turfgrass by application of entomopathogenic nematodes. Biocontrol Science and Technology, 7, 393–399.Google Scholar
  115. Grewal, P. S., Selvan, S., Lewis, E. E., & Gaugler, R. (1993). Male insect–parasitic nematodes: A colonizing sex. Experientia, 49, 605–608.Google Scholar
  116. Grewal, P. S., Selvan, S., & Gaugler, R. (1994). Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19, 245–253.Google Scholar
  117. Grewal, P. S., Wang, X., & Taylor, R. A. J. (2002). Dauer juvenile longevity and stress tolerance in natural populations of an entomopathogenic nematode: Is there a relationship? International Journal of Parasitology, 32, 717–725.PubMedGoogle Scholar
  118. Grewal, S. K., Grewal, P. S., & Gaugler, R. (1995). Endophytes of fescue grasses enhance susceptibility of Popillia japonica larvae to an entomopathogenic nematode. Entomologia Experimentalis et Applicata, 74, 219–224.Google Scholar
  119. Griffin, C. T. (1993). Temperature responses of entomopathogenic nematodes: Implications for the success of biological control programmes. In R. Bedding, R. Akhurst, & H. K. Kaya (Eds.), Nematodes and the biological control of insects (pp. 115–126). East Melbourne, Australia: CSIRO.Google Scholar
  120. Griffin, C. T. (2012). Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: Traits contributing to nematode fitness and biocontrol efficacy. Journal of Nematology, 44(2), 177–184.PubMedCentralPubMedGoogle Scholar
  121. Gulcu, B., Hazir, S., & Kaya, H. K. (2012). Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Journal of Invertebrate Pathology, 110, 326–333.PubMedGoogle Scholar
  122. Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41–49.Google Scholar
  123. Hanski, I. (1999a). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219.Google Scholar
  124. Hanski, I. (1999b). Metapopulation ecology. Oxford, UK: Oxford University Press.Google Scholar
  125. Hanski, I. (2001). Spatially realistic theory of metapopulation ecology. Naturwissenschaften, 88, 372–381.PubMedGoogle Scholar
  126. Hanski, I., & Simberloff, D. (1997). The metapopulation approach, its history, conceptual domain and application to conservation. In I. Hanski & M. E. Gilpin (Eds.), Metapopulation biology: Ecology, genetics, and evolution (pp. 5–26). London: Academic.Google Scholar
  127. Harrison, S., & Hastings, A. (1996). Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology and Evolution, 11, 180–183.PubMedGoogle Scholar
  128. Harrison, S., & Taylor, A. D. (1997). Empirical evidence for metapopulation dynamics. In I. Hanski & M. E. Gilpin (Eds.), Metapopulation biology: Ecology, genetics, and evolution (pp. 27–42). London: Academic.Google Scholar
  129. Hawksworth, D. L. (1991). The biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture. Wallingford, UK: CABI.Google Scholar
  130. Hay, D. B., & Fenlon, J. S. (1997). A modified binomial model that describes the infection dynamics of the entomopathogenic nematode Steinernema feltiae (Steinernematidae; Nematoda). Parasitology, 111, 627–633.Google Scholar
  131. Hillel, P. M. (1982). Fundamentals of soil physics. New York: Academic.Google Scholar
  132. Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24, 93–114.Google Scholar
  133. Hominick, W. M. (2002). Biogeography. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 115–143). Wallingford, UK: CABI.Google Scholar
  134. Hominick, W. M., & Briscoe, B. R. (1990a). Survey of 15 sites over 28 months for entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology, 100, 289–294.Google Scholar
  135. Hominick, W. M., & Briscoe, B. R. (1990b). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in British soils. Parasitology, 100, 295–302.Google Scholar
  136. Hominick, W. M., Hunt, D. J., Reid, A. P., Briscoe, B. R., & Bohan, D. A. (1999). Biosystematics, phylogeny and population genetics of entomopathogenic nematodes. In N. Boemare, P. Richardson, & F. Coudert (Eds.), COST 819. Taxonomy, phylogeny and gnotobiological studies of entomopathogenic nematodes bacterium complexes (pp. 45–53). Brussels, Belgium: European Commission.Google Scholar
  137. Hominick, W. M., & Reid, A. P. (1990). Perspectives on entomopathogenic nematology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 327–345). Boca Raton, FL: CRC Press.Google Scholar
  138. Hominick, W. M., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 6, 317–331.Google Scholar
  139. Hoy, C. W., Grewal, P. S., Lawrence, J. L., Jagdale, G., & Acosta, N. (2008). Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free–living nematode species. Biological Control, 46, 371–379.Google Scholar
  140. Hsiao, W. F., & All, J. N. (1997). Effect of animal manure on the survival and pathogenicity of the entomopathogenic nematode, Steinernema carpocapsae. Zhonghua Kunchong, 17, 53–65.Google Scholar
  141. Hsiao, W. F., & All, J. N. (1998). Survey of the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae) natural populations and its dispersal in the field. Chinese Journal of Entomology, 18, 39–49.Google Scholar
  142. Hudson, W. G., & Nguyen, K. B. (1989). Effects of soil moisture, exposure time, nematode age, and nematode density on laboratory infection of Scapteriscus vicinus and Scapteriscus acletus (Orthoptera: Gryllotalpidae) by Neoaplectana sp. (Rhabditida: Steinernematidae). Environmental Entomology, 18, 719–722.Google Scholar
  143. Hummel, R., Walgenbach, J. F., Barbercheck, M. E., Kennedy, G. G., Hoyt, G. D., & Arellano, C. (2002). Effects of production practices on soil–borne entomopathogens in western North Carolina vegetable systems. Environmental Entomology, 31, 84–91.Google Scholar
  144. Ishibashi, N., & Kondo, E. (1986). Steinernema feltiae (DD–136) and S. glaseri: persistence in soil and bark compost and their influence on native nematodes. Journal of Nematology, 18, 310–316.PubMedCentralPubMedGoogle Scholar
  145. Ishibashi, N., & Kondo, E. (1987). Dynamics of the entomogenous nematode Steinernema feltiae applied to soil with and without nematicide treatment. Journal of Nematology, 19, 404–412.PubMedCentralPubMedGoogle Scholar
  146. Ishibashi, N., & Kondo, E. (1990). Behaviour of infective juveniles. In R. Gaugler & K. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 139–150). Boca Raton, FL: CRC Press.Google Scholar
  147. Jabbour, R., Crowder, D. W., Aultman, E. A., & Snyder, W. E. (2011). Entomopathogen biodiversity increases host mortality. Biological Control, 59, 277–283.Google Scholar
  148. Jagdale, G. B., & Gordon, R. (1998). Effect of propagation temperatures on temperature tolerances of entomopathogenic nematodes. Fundamental and Applied Nematology, 21, 177–183.Google Scholar
  149. Jagdale, G. B., Kamoun, S., & Grewal, P. S. (2009). Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control, 51, 102–109.Google Scholar
  150. Jagdale, G. B., Saeb, A. T. M., Somasekhar, N., & Grewal, P. S. (2006). Genetic variation and relationships between isolates and species of the entompathogenic nematode genus Heterorhabditis deciphered through isozyme profiles. Journal of Parasitology, 92, 509–516.PubMedGoogle Scholar
  151. Jagdale, G. B., Somasekhar, N., Grewal, P. S., & Klein, M. G. (2002). Suppression of plant–parasitic nematodes by application of live and dead infective juveniles of an entomopathogenic nematode, Steinernema carpocapsae, on boxwood (Buxus spp.). Biological Control, 24, 42–49.Google Scholar
  152. Jaworska, M. (1993). Investigations on the possibility of using entomophilic nematodes in reduction of Cephalcia abietis (L.) (Hym. Pamphiliidae) population. Polskie Pismo Entomologiczne, 62, 201–213.Google Scholar
  153. Karagoz, M., Gulcu, B., Cakmak, I., Kaya, H. K., & Hazir, S. (2007). Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Experimental and Applied Acarology, 43, 85–95.PubMedGoogle Scholar
  154. Kaya, H. K. (1990). Soil ecology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 93–115). Boca Raton, FL: CRC Press.Google Scholar
  155. Kaya, H. K. (2002). Natural enemies and other antagonists. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 189–203). Wallingford, UK: CABI.Google Scholar
  156. Kaya, H. K., Bedding, R. A., & Akhurst, R. J. (1993). An overview of insect–parasitic and entomopathogenic nematodes. In R. Bedding, R. Akhurst, & H. K. Kaya (Eds.), Nematodes and the biological control of insect pests (pp. 1–10). East Melbourne, Australia: CSIRO Publications.Google Scholar
  157. Kaya, H. K., & Brayton, M. A. (1978). Interaction between Neoaplectana carpocapsae and a granulosis virus of the armyworm Pseudaletia unipuncta. Journal of Nematology, 10, 350–354.PubMedCentralPubMedGoogle Scholar
  158. Kaya, H. K., & Burlando, T. M. (1989). Development of Steinernema feltiae (Rhabditida: Steinernematidae) in diseased insect hosts. Journal of Invertebrate Pathology, 53, 164–168.Google Scholar
  159. Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.Google Scholar
  160. Kaya, H. K., & Koppenhöfer, A. M. (1996). Effects of microbial and other antagonistic organisms and competition on entomopathogenic nematodes. Biocontrol Science and Technology, 6, 357–371.Google Scholar
  161. Khatri-Chhetri, H. B., Waeyenberge, L., Manandhar, H. K., & Moens, M. (2010). Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Nepal. Journal of Invertebrate Pathology, 103(1), 74–78.PubMedGoogle Scholar
  162. Kondo, E. (1989). Studies on the infectivity and propagation of entomogenous nematodes, Steinernema spp. (Rhabdititida: Steinernematidae) in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of the Faculty of Agriculture. Saga University, 67, 1–87.Google Scholar
  163. Koppenhöfer, A. M., Baur, M. E., Stock, S. P., Choo, H. Y., Chinnasri, B., & Kaya, H. K. (1997). Survival of entomopathogenic nematodes within host cadavers in dry soil. Applied Soil Ecology, 6, 231–240.Google Scholar
  164. Koppenhöfer, A. M., Choo, H. Y., Kaya, H. K., Lee, D. W., & Gelernter, W. D. (1999). Increased field and greenhouse efficacy against scarab grubs with a combination of an entomopathogenic nematode and Bacillus thuringiensis. Biological Control, 14, 37–44.Google Scholar
  165. Koppenhöfer, A. M., & Kaya, H. K. (1996a). Coexistence of two steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Applied Soil Ecology, 4, 221–230.Google Scholar
  166. Koppenhöfer, A. M., & Kaya, H. K. (1996b). Coexistence of entomopathogenic nematode species (Steinernematidae and Heterorhabditidae) with different foraging behavior. Fundamental and Applied Nematology, 19, 175–183.Google Scholar
  167. Koppenhöfer, A. M., & Kaya, H. K. (1997). Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biological Control, 8, 131–137.Google Scholar
  168. Koppenhöfer, A. M., Kaya, H. K., Shanmugam, S., & Wood, G. L. (1995). Interspecific competition between steinernematid nematodes within an insect host. Journal of Invertebrate Pathology, 66, 99–103.Google Scholar
  169. Koppenhöfer, A. M., Kaya, H. K., & Taormino, S. (1995). Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. Journal of Invertebrate Pathology, 65, 193–199.Google Scholar
  170. Kung, S. P., Gaugler, R., & Kaya, H. K. (1990a). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.Google Scholar
  171. Kung, S. P., Gaugler, R., & Kaya, H. K. (1990b). Influence of soil pH and oxygen on persistence of Steinernema spp. Journal of Nematology, 22, 440–445.PubMedCentralPubMedGoogle Scholar
  172. Kung, S. P., Gaugler, R., & Kaya, H. K. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57, 242–249.Google Scholar
  173. Kunkel, B., & Grewal, P. S. (2003). Endophytic infection in perennial ryegrass reduces the susceptibility of Agrotis ipsilon (Lepidoptera) to an entomopathogenic nematode. Entomologia Experimentalis et Applicata, 107, 95–104.Google Scholar
  174. Kunkel, B., Grewal, P. S., & Quigley, M. F. (2004). A mechanism of acquired resistance by the black cutworm Agrotis ipsilon (Lepidoptera) to an entomopathogenic nematode. Biological Control, 29, 100–108.Google Scholar
  175. Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218–225.PubMedCentralPubMedGoogle Scholar
  176. Lacey, L. A., Kaya, H. K., & Bettencourt, R. (1995). Dispersal of Steinernema glaseri (Nematoda: Steinernematidae) in adult Japanese beetles, Popillia japonica (Coleoptera: Scarabaeidae). Biocontrol Science and Technology, 5, 121–130.Google Scholar
  177. Lawrence, J. L., Hoy, C. W., & Grewal, P. S. (2006). Spatial and temporal distribution of endemic entomopathogenic nematodes in a heterogeneous vegetable production landscape. Biological Control, 37, 247–255.Google Scholar
  178. Letourneau, D. K. (1998). Conservation biological control: Lessons for conserving natural enemies. In P. Barbosa (Ed.), Conservation biological control (pp. 9–38). New York: Academic.Google Scholar
  179. Lewis, E. E. (2002). Behavioural ecology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 205–223). New York: CABI.Google Scholar
  180. Lewis, E. E., Campbell, J. F., Griffin, C., Kaya, H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38(1), 66–79.Google Scholar
  181. Lewis, E. E., Campbell, J. F., & Gaugler, R. (1998). A conservation approach to using entomopathogenic nematodes in turf and landscapes. In P. Barbosa (Ed.), Conservation biological control (pp. 235–254). New York: Academic.Google Scholar
  182. Lewis, E. E., & Gaugler, R. (1994). Entomopathogenic nematode (Rhabdita: Steinernematidae) sex ratio relates to foraging strategy. Journal of Invertebrate Pathology, 64, 238–242.Google Scholar
  183. Lewis, E. E., Gaugler, R., & Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology, 71(4), 765–769.Google Scholar
  184. Lewis, E. E., Grewal, P. S., & Sardanelli, S. (2001). Interactions between Steinernema feltiaeXenorhabdus bovienii insect pathogen complex and root–knot nematode Meloidogyne incognita. Biological Control, 21, 55–62.Google Scholar
  185. Mason, J. M., & Hominick, W. M. (1995). The effect of temperature on infection, development and reproduction of heterorhabditids. Journal of Helminthology, 69, 337–345.PubMedGoogle Scholar
  186. Maynard Smith, J. (1989). Evolutionary genetics. New York: Oxford University Press.Google Scholar
  187. McCauley, D. E. (1991). Genetic consequences of local population extinction and recolonization. Trends in Ecology and Evolution, 6, 5–8.PubMedGoogle Scholar
  188. McCauley, D. E. (1995). Effects of population dynamics on genetics in mosaic landscapes. In L. Hansson, L. Fahrig, & G. Merriam (Eds.), Mosaic landscapes and ecological processes (pp. 178–198). London: Chapman and Hall.Google Scholar
  189. Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional–till and no–till corn. Biological Control, 22, 235–245.Google Scholar
  190. Millar, L. C., & Barbercheck, M. E. (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biological Control, 25, 1–11.Google Scholar
  191. Mráček, Z., Becvár, S., Kindlmann, P., & Jersakova, J. (2005). Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control, 34, 27–37.Google Scholar
  192. Mráček, Z., Becvár, S., & Kindlmann, P. (1999). Survey of entomopathogenic nematodes from the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the Czech Republic. Folia Parasitologica, 46, 145–148.Google Scholar
  193. Mráček, Z., & Webster, J. M. (1993). Survey of Heterorhabditidae and Steinernematidae (Rhabditida: Nematoda) in western Canada. Journal of Nematology, 25, 710–717.PubMedCentralPubMedGoogle Scholar
  194. Neher, D., & Barbercheck, M. E. (1999). Diversity and function of soil mesofauna. In W. Collins & C. O. Qualset (Eds.), The biodiversity of agroecosystems (pp. 27–47). Boca Raton, FL: CRC Press.Google Scholar
  195. Nguyen, K. B., & Smart, G. C., Jr. (1995). Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nematoda: Rhabditida). Journal of Nematology, 27, 206–212.PubMedCentralPubMedGoogle Scholar
  196. Nickle, W. R. (1984). Plant and insect nematodes. New York: Marcel Decker.Google Scholar
  197. O’Callaghan, K. M., Zenner, A. N., Hartley, C. J., & Griffin, C. T. (2014). Interference competition in entomopathogenic nematodes: Male Steinernema kill members of their own and other species. International Journal for Parasitology, 44(13), 1009–1017.PubMedGoogle Scholar
  198. Pathak, E., El-Borai, F. E., Campos-Herrera, R., Johnson, E. G., Stuart, R. J., Graham, J. H., et al. (2012). Use of real–time PCR to discriminate predatory and saprophagous behavior by nematophagous fungi. Fungal Biology, 116, 563–573.PubMedGoogle Scholar
  199. Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biological Control Science and Technology, 6, 389–402.Google Scholar
  200. Peters, A., & Ehlers, R.–. U. (1994). Susceptibility of leather jackets (Tipula paludosa and Tipula oleracea; Tipulidae; Nematocera) to the entomopathogenic nematode Steinernema feltiae. Journal of Invertebrate Pathology, 63, 163–171.Google Scholar
  201. Pianka, E. P. (1999). Evolutionary ecology (6th ed.). New York: Harper and Row.Google Scholar
  202. Poinar, G. O. (1990). Biology and taxonomy of Steinernematidae and Heterorhabditidae. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 23–61). Boca Raton, FL: CRC Press.Google Scholar
  203. Polis, G. A., Anderson, W. B., & Holt, R. D. (1997). Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.Google Scholar
  204. Portillo-Aguilar, C., Villani, M. G., Tauber, M. J., Tauber, C. A., & Nyrop, J. P. (1999). Entomopathogenic nematode (Rhabditida: Heterorhabditidae and Steinernematidae) response to soil texture and bulk density. Environmental Entomology, 28, 1021–1035.Google Scholar
  205. Preisser, E. L. (2003). Field evidence for a rapidly cascading underground food web. Ecology, 84, 869–874.Google Scholar
  206. Preisser, E. L., Dugaw, C. J., Dennis, B., & Strong, D. R. (2006). Plant facilitation of a belowground predator. Ecology, 87, 1116–1123.PubMedGoogle Scholar
  207. Preisser, E. L., & Strong, D. R. (2004). Climate affects predator control of an herbivore outbreak. American Naturalist, 163, 754–762.PubMedGoogle Scholar
  208. Půža, V., & Mráček, Z. (2009). Mixed infection of Galleria mellonella with two entomopathogenic nematodes (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. Journal of Invertebrate Pathology, 102, 40–43.PubMedGoogle Scholar
  209. Půža, V., & Mráček, Z. (2010a). Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)? Journal of Invertebrate Pathology, 104(1), 1–3.PubMedGoogle Scholar
  210. Půža, V., & Mráček, Z. (2010b). Mechanisms of coexistence of two sympatric entomopathogenic nematodes, Steinernema affine and S. kraussei (Nematoda: Steinernematidae), in a central European oak woodland soil. Applied Soil Ecology, 45, 65–70.Google Scholar
  211. Pye, A. E., & Burman, M. (1981). Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology, 51(1), 13–20.PubMedGoogle Scholar
  212. Qiu, L., & Bedding, R. (1999). The relationship between energy metabolism and survival of the infective juveniles of Steinernema carpocapsae under unstressed–aerobic and anaerobic conditions. In I. Glazer, P. Richardson, M. E. Boemare, & F. Coudert (Eds.), Survival strategies of entomopathogenic nematodes (pp. 149–156). Brussels, Belgium: European Commission.Google Scholar
  213. Ram, K., Gruner, D. S., McLaughlin, J. P., Preisser, E. L., & Strong, D. R. (2008). Dynamics of a subterranean trophic cascade in space and time. Journal of Nematology, 40(2), 85–92.PubMedCentralPubMedGoogle Scholar
  214. Ram, K., Preisser, E. L., Gruner, D. S., & Strong, D. R. (2008). Metapopulation dynamics override local limits on long–term parasite persistence. Ecology, 89(12), 3290–3297.PubMedGoogle Scholar
  215. Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., et al. (2005). Recruitment of entomopathogenic nematodes by insect–damaged maize roots. Nature, 434, 732–737.PubMedGoogle Scholar
  216. Reid, A. P., & Hominick, W. M. (1992). Restriction fragment length polymorphisms within the ribosomal DNA repeat unit of British entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology, 105, 317–323.Google Scholar
  217. Richmond, D., Kunkel, B. A., Somasekhar, N., & Grewal, P. S. (2004). Top–down and bottom–up regulation of herbivores: Spodoptera frugiperda turns tables on endophyte–mediated plant defense and virulence of an entomopathogenic nematode. Ecological Entomology, 29, 353–360.Google Scholar
  218. Rolston, A. N., Griffin, C. T., & Downes, M. J. (2006). Emergence and dispersal patterns of two isolates of the entomopathogenic nematode Steinernema feltiae. Journal of Nematology, 38, 221–228.PubMedCentralPubMedGoogle Scholar
  219. Rosa, J. S., & Simões, N. (2004). Evaluation of twenty–eight strains of Heterorhabditis bacteriophora isolated in Azores for biocontrol of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). Biological Control, 29(3), 409–417.Google Scholar
  220. Saeb, A. T. M., & Grewal, P. S. (2008). Genetic variation and sub–species structure of entomopathogenic nematode Heterorhabditis bacteriophora based on the major sperm protein gene. International Journal of Nematology, 17, 187–198.Google Scholar
  221. San-Blas, E., & Gowen, S. R. (2008). Facultative scavenging as a survival strategy of entomopathogenic nematodes. International Journal for Parasitology, 38(1), 85–91.PubMedGoogle Scholar
  222. San-Blas, E., Gowen, S. R., & Pembroke, B. (2008). Scavenging or infection? Possible host choosing by entomopathogenic nematodes. Nematology, 10(2), 251–259.Google Scholar
  223. Sayre, R. M., & Walter, D. E. (1991). Factors affecting the efficacy of natural enemies of nematodes. Annual Review of Phytopathology, 29, 149–166.Google Scholar
  224. Selvan, S., Campbell, J. F., & Gaugler, R. (1993). Density–dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology, 62, 278–284.Google Scholar
  225. Selvan, S., Gaugler, R., & Grewal, P. S. (1993). Water content and fatty acid composition of infective juvenile entomopathogenic nematodes during storage. Journal of Parasitology, 79, 510–516.Google Scholar
  226. Selvan, S., Gaugler, R., & Lewis, E. E. (1993). Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology, 79, 167–172.Google Scholar
  227. Shamseldean, M. M., & Abd-Elgawad, M. M. (1994). Natural occurrence of insect pathogenic nematodes (Rhabditida: Heterorhabditidae) in Egyptian soils. Afro–Asian Journal of Nematology, 4, 151–154.Google Scholar
  228. Shapiro, D. I., Berry, E. C., & Lewis, L. C. (1993). Interactions between nematodes and earthworms: Enhanced dispersal of Steinernema carpocapsae. Journal of Nematology, 25, 189–192.PubMedCentralPubMedGoogle Scholar
  229. Shapiro, D. I., Glazer, I., & Segal, D. (1997). Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biological Control, 8(2), 153–159.Google Scholar
  230. Shapiro, D. I., Lewis, L. C., Obrycki, J. J., & Abbas, M. (1999). Effects of fertilizers on suppression of black cutworm (Agrotis ipsilon) damage with Steinernema carpocapsae. Journal of Nematology, 31, 690–693.PubMedCentralPubMedGoogle Scholar
  231. Shapiro, D. I., McCoy, C. W., Fares, A., Obreza, T., & Dou, H. (2000). Effects of soil type on virulence and persistence of entomopathogenic nematodes in relation to control of Diaprepes abbreviatus. Environmental Entomology, 29, 1083–1087.Google Scholar
  232. Shapiro, D. I., Obrycki, J. J., Lewis, L. C., & Jackson, J. J. (1999). Effects of crop residue on the persistence of Steinernema carpocapsae. Journal of Nematology, 31, 517–519.PubMedCentralPubMedGoogle Scholar
  233. Shapiro-Ilan, D. I., Campbell, J. F., Lewis, E. E., Elkon, J. M., & Kim-Shapiro, D. B. (2009). Directional movement of steinernematid nematodes in response to electrical current. Journal of Invertebrate Pathology, 100, 134–137.PubMedGoogle Scholar
  234. Shapiro-Ilan, D. I., Gouge, D. H., & Koppenhöfer, A. M. (2002). Factors affecting commercial success: Case studies in cotton, turf and citrus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 333–355). Wallingford, UK: CABI.Google Scholar
  235. Shapiro-Ilan, D. I., Lewis, E. E., Campbell, J. F., & Kim-Shapiro, D. B. (2012). Directional movement of entomopathogenic nematodes in response to electrical fields: Effects of species, magnitude of voltage, and infective juvenile age. Journal of Invertebrate Pathology, 109, 34–40.PubMedGoogle Scholar
  236. Shapiro-Ilan, D. I., Lewis, E. E., & Schliekelman, P. (2014). Aggregative group behavior in insect parasitic nematode dispersal. International Journal for Parasitology, 44(1), 49–54.PubMedGoogle Scholar
  237. Sharpe, W. E., & Drohan, J. R. (1999). The effects of acid deposition on Pennsylvania's forests. University Park, PA: Environmental Resources Research Institute.Google Scholar
  238. Sicard, M., Hinsinger, J., Le Brun, N., Pages, S., Boemare, N., & Moulia, C. (2006). Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evolutionary Biology, 6(1), 68.PubMedCentralPubMedGoogle Scholar
  239. Small, R. W. (1987). A review of the prey of predatory soil nematodes. Pedobiologia, 30, 179–206.Google Scholar
  240. Somasekhar, N., Grewal, P. S., DeNardo, E. A. B., & Stinner, B. R. (2002). Non–target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology, 39, 735–744.Google Scholar
  241. Somasekhar, N., Grewal, P. S., & Klein, M. G. (2002). Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biological Control, 23, 303–310.Google Scholar
  242. Spiridonov, S. E., Moens, M., & Wilson, M. J. (2007). Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Applied Soil Ecology, 37, 192–201.Google Scholar
  243. Spiridonov, S. E., & Voronov, D. A. (1995). Small scale distribution of Steinernema feltiae juveniles in cultivated soil. In C. T. Griffin, R. L. Gwynn, & J. P. Masson (Eds.), Ecology and transmission strategies of entomopathogenic nematodes (pp. 36–41). Luxembourg, Luxembourg: European Commission.Google Scholar
  244. Stinner, B. R., & House, G. J. (1990). Arthropods and other invertebrates in conservation–tillage agriculture. Annual Review of Entomology, 35, 299–318.Google Scholar
  245. Stinner, B. R., McCartney, D. A., & Van Doren, D. M., Jr. (1988). Soil and foliage arthropod communities in conventional, reduced and no–tillage corn (maize, Zea mays L.) systems: A comparison after 20 years of continuous cropping. Soil and Tillage Research, 11, 147–158.Google Scholar
  246. Stirling, G. R. (1991). Biological control of plant parasitic nematodes. Wallingford, UK: CABI.Google Scholar
  247. Stock, S. P., Strong, D., & Gardner, S. L. (1996). Identification of Heterorhabditis (Nematoda: Heterorhabditidae) from California with a new species isolated from the larvae of the ghost moth Hepialis californicus (Lepidoptera: Hepialidae) from the Bodega Bay Natural Reserve. Fundamental and Applied Nematology, 19, 585–595.Google Scholar
  248. Strong, D. R. (2002). Populations of entomopathogenic nematodes in foodwebs. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 225–240). Wallingford, UK: CABI.Google Scholar
  249. Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., et al. (1996). Entomopathogenic nematodes: Natural enemies of root–feeding caterpillars on bush lupine. Oecologia, 108, 167–173.Google Scholar
  250. Strong, D. R., Maron, J. L., Connors, P. G., Whipple, A., Harrison, S., & Jeffries, R. L. (1995). High mortality, fluctuation in numbers, and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Oecologia, 104, 85–92.Google Scholar
  251. Strong, D. R., Whipple, A. V., Child, A. L., & Dennis, B. (1999). Model selection for a subterranean trophic cascade: Root–feeding caterpillars and entomopathogenic nematodes. Ecology, 80, 2750–2761.Google Scholar
  252. Stuart, R. J., Abu Hatab, M., & Gaugler, R. (1998). Sex ratio and the infection process in entomopathogenic nematodes: Are males the colonizing sex? Journal of Invertebrate Pathology, 72, 288–295.PubMedGoogle Scholar
  253. Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J., & Hoy, C. W. (2006). Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38, 80–102.Google Scholar
  254. Stuart, R. J., El-Borai, F. E., & Duncan, L. W. (2008). From augmentation to conservation of entomopathogenic nematodes: Trophic cascades, habitat manipulation and enhanced biological control of Diaprepes abbreviatus root weevils in Florida citrus groves. Journal of Nematology, 40, 73–84.PubMedCentralPubMedGoogle Scholar
  255. Stuart, R. J., & Gaugler, R. (1994). Patchiness in populations of entomopathogenic nematodes. Journal of Invertebrate Pathology, 64, 39–45.Google Scholar
  256. Stuart, R. J., & Gaugler, R. (1996). Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode, Steinernema glaseri. Canadian Journal of Zoology, 74, 164–170.Google Scholar
  257. Stuart, R. J., Lewis, E. E., & Gaugler, R. (1996). Selection alters the pattern of emergence from the host cadaver in the entomopathogenic nematode, Steinernema glaseri. Parasitology, 113, 183–189.Google Scholar
  258. Stuart, R. J., Shapiro-Ilan, D. I., James, R. R., Nguyen, K. B., & McCoy, C. W. (2004). Virulence of new and mixed strains of the entomopathogenic nematode Steinernema riobrave to larvae of the citrus root weevil, Diaprepes abbreviatus. Biological Control, 24, 199–206.Google Scholar
  259. Sturhan, D. (1999). Prevalence and habitat specificity of entomopathogenic nematodes in Germany. In R. L. Gwynn, P. H. Smits, C. Griffin, R.–. U. Ehlers, N. E. Boemare, & J.–. P. Masson (Eds.), Entomopathogenic nematodes: Application and persistence of entomopathogenic nematodes (pp. 123–132). Brussels, Belgium: European Commission.Google Scholar
  260. Sturhan, D., & Lisková, M. (1999). Occurrence and distribution of entomopathogenic nematodes in the Slovak Republic. Nematology, 1, 273–277.Google Scholar
  261. Sugar, D. R., Murfin, K. E., Chaston, J. M., Andersen, A. W., Richards, G. R., de Léon, L., et al. (2012). Phenotypic variation and host interactions of Xenorhabdus bovienii SS‐2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environmental Microbiology, 14(4), 924–939.PubMedCentralPubMedGoogle Scholar
  262. Taylor, R. A. J. (1999). Sampling entomopathogenic nematodes and measuring their spatial distribution. In R. L. Gwynn, P. H. Smits, C. Griffin, R.–. U. Ehlers, N. E. Boemare, & J.–. P. Masson (Eds.), Application and persistence of entomopathogenic nematodes (pp. 43–60). Brussels, Belgium: European Commission.Google Scholar
  263. Therese, M. O., & Bashey, F. (2012). Natal–host environmental effects on juvenile size, transmission success, and operational sex ratio in the entomopathogenic nematode Steinernema carpocapsae. The Journal of Parasitology, 98(6), 1095–1100.PubMedGoogle Scholar
  264. Thurston, G. S., Ni, Y., & Kaya, H. K. (1994). Influence of salinity on survival and infectivity of entomopathogenic nematodes. Journal of Nematology, 26, 345–351.PubMedCentralPubMedGoogle Scholar
  265. Timper, P., & Kaya, H. K. (1992). Impact of a nematode–parasitic fungus on the effectiveness of entomogenous nematodes. Journal of Nematology, 24, 1–8.PubMedCentralPubMedGoogle Scholar
  266. Timper, P., Kaya, H. K., & Gaugler, R. (1988). Dispersal of the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae) by infected adult insects. Environmental Entomology, 17, 546–550.Google Scholar
  267. Timper, P., Kaya, H. K., & Jaffee, B. A. (1991). Survival of entomogenous nematodes in soil infested with the nematode–parasitic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes). Biological Control, 1, 42–50.Google Scholar
  268. Torr, P., Heritage, S., & Wilson, M. J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology, 34(9), 997–999.PubMedGoogle Scholar
  269. Torr, P., Spiridonov, S. E., Heritage, S., & Wilson, M. J. (2007). Habitat associations of two entomopathogenic nematodes: A quantitative study using real‐time quantitative polymerase chain reactions. Journal of Animal Ecology, 76(2), 238–245.PubMedGoogle Scholar
  270. Townsend, M. L., Johnson, D. T., & Steinkraus, D. C. (1998). Laboratory studies of the interactions of environmental conditions on the susceptibility of green June beetle (Coleoptera: Scarabaeidae) grubs to entomopathogenic nematodes. Journal of Entomological Science, 33, 40–48.Google Scholar
  271. Turlings, T., Hiltpold, I., & Rasmann, S. (2012). The importance of root produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil, 358, 51–60.Google Scholar
  272. Ulug, D., Hazir, S., Kaya, H. K., & Lewis, E. (2014). Natural enemies of natural enemies: The potential top‐down impact of predators on entomopathogenic nematode populations. Ecological Entomology, 39(4), 462–469.Google Scholar
  273. Vandermeer, J., & Perfecto, I. (1995). Breakfast of biodiversity: The truth about rain forest destruction. Oakland, CA: Food First Books.Google Scholar
  274. Wall, D., & Moore, J. C. (1999). Interactions underground: Soil biodiversity, mutualism, and ecosystem processes. BioScience, 49, 109–117.Google Scholar
  275. Wallace, H. R. (1971). Abiotic influences in the soil environment. In B. M. Zuckerman, W. F. Mai, & R. A. Rohde (Eds.), Plant parasitic nematodes (Vol. 1, pp. 257–280). New York: Academic.Google Scholar
  276. Walter, D. E. (1987a). Trophic behavior of ‘mycophagous’ microarthropods. Ecology, 68, 226–229.Google Scholar
  277. Walter, D. E. (1987b). Life history, trophic behaviour and description of Gamasellodes vermivorax n. sp. (Mesostigmatoa: Ascidae), a predator of nematodes and arthropods in semiarid grassland soils. Canadian Journal of Zoology, 65, 1689–1695.Google Scholar
  278. Walter, D. E. (1988a). Predation and mycophagy by endostigmatid mites (Acariformes: Prostigmata). Experimental and Applied Acarology, 4, 159–166.Google Scholar
  279. Walter, D. E. (1988b). Nematophagy by soil arthropods from the shortgrass steppe, Chihauahuan Desert and Rocky Mountains of the central United States. Agriculture, Ecosystems & Environment, 24, 307–316.Google Scholar
  280. Walter, D. E., Hudgens, R. A., & Freckman, D. W. (1986). Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia, 70, 357–361.Google Scholar
  281. Walter, D. E., Hunt, H. W., & Elliot, E. T. (1987). The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia, 30, 419–424.Google Scholar
  282. Walter, D. E., Moore, J. C., & Loring, S. J. (1989). Symphylella sp. (Symphyla: Scolopendrellidae) predators of arthropods and nematodes in grassland soils. Pedobiologia, 33, 113–116.Google Scholar
  283. Wang, H., Jung, Y. H., Son, D., & Choo, H. Y. (2013). High level of genetic diversity among Steinernema monticolum in Korea revealed by single–enzyme amplified fragment length polymorphism. Journal of Invertebrate Pathology, 113(2), 146–151.PubMedGoogle Scholar
  284. Wang, X., & Grewal, P. S. (2002). Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biological Control, 23, 71–78.Google Scholar
  285. Wang, Y., Gaugler, R., & Cui, L. (1994). Variation in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology, 26, 11–18.PubMedCentralPubMedGoogle Scholar
  286. Westerman, P. R. (1998). Penetration of the entomopathogenic nematode Heterorhabditis spp. into host insects at 9 and 20 degrees C. Journal of Invertebrate Pathology, 72, 197–205.PubMedGoogle Scholar
  287. Wharton, D. A., & Surrey, M. R. (1994). Cold tolerance mechanisms of the infective larvae of the insect parasitic nematode, Heterorhabditis zealandica Poinar. Cryo Letters, 15, 353–360.Google Scholar
  288. Wiens, J. A., Schooley, R. L., & Weeks, R. D., Jr. (1997). Patchy landscapes and animal movements: Do beetles percolate? Oikos, 78, 257–264.Google Scholar
  289. Williams, C. D., Dillon, A. B., Girling, R. D., & Griffin, C. T. (2013). Organic soils promote the efficacy of entomopathogenic nematodes, with different foraging strategies, in the control of a major forest pest: A meta–analysis of field trial data. Biological Control, 65(3), 357–364.Google Scholar
  290. Wilson, M. J., Ehlers, R.-U., Wilson, M. J., & Glazer, I. (2012). Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematology, 14, 389–394.Google Scholar
  291. Wilson, M. J., Lewis, E. E., Yoder, F., & Gaugler, R. (2003). Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biological Control, 26, 180–188.Google Scholar
  292. Windels, C. E. (1997). Altering community balance: Organic amendments, selection pressures, and biological control. In D. A. Andow, D. W. Ragsdale, & R. F. Nyvall (Eds.), Ecological interactions in biological control (pp. 282–300). Boulder, CO: Westview Press.Google Scholar
  293. With, K. A., Pavuk, D. M., Worchuck, J. L., Oates, R. K., & Fisher, J. L. (2002). Threshold effects of landscape structure on biological control in agroecosystems. Ecological Applications, 12, 52–65.Google Scholar
  294. Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443–466.Google Scholar
  295. Yodder, C. A., Grewal, P. S., & Taylor, R. A. J. (2004). Rapid age–related changes in infection behavior of entomopathogenic nematodes. Journal of Parasitology, 90, 1229–1234.Google Scholar
  296. Zenner, A. N. R. L., O’Callaghan, K. M., & Griffin, C. T. (2014). Lethal fighting in nematodes is dependent on developmental pathway: Male–male fighting in the entomopathogenic nematode Steinernema longicaudum. PloS One, 9(2), e89385.PubMedCentralPubMedGoogle Scholar
  297. Zervos, S., Johnson, S. C., & Webster, J. M. (1991). Effect of temperature and inoculum size on reproduction and development of Heterorhabditis heliothidis and Steinernema glaseri (Nematoda: Rhabditoidea) in Galleria mellonella. Canadian Journal of Zoology, 69, 1261–1264.Google Scholar
  298. Zhou, X., Kaya, H. K., Heungens, K., & Goodrich-Blair, H. (2002). Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Applied and Environmental Microbiology, 68, 6202–6209.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Robin J. Stuart
    • 1
  • Mary E. Barbercheck
    • 2
  • Parwinder S. Grewal
    • 3
  1. 1.Division of Plant Industry, Florida Department of Agriculture and Consumer ServicesDundee Biological Control LaboratoryDundeeUSA
  2. 2.Department of EntomologyPennsylvania State UniversityUniversity ParkUSA
  3. 3.Entomology and Plant Pathology DepartmentUniversity of TennesseeKnoxvilleUSA

Personalised recommendations