Optimal Online and Offline Algorithms for Robot-Assisted Restoration of Barrier Coverage

  • J. Czyzowicz
  • E. Kranakis
  • D. Krizanc
  • L. Narayanan
  • J. Opatrny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8952)


Cooperation between mobile robots and wireless sensor networks is a line of research that is currently attracting a lot of attention. In this context, we study the following problem of barrier coverage by stationary wireless sensors that are assisted by a mobile robot with the capacity to move sensors. Assume that \(n\) sensors are initially arbitrarily distributed on a line segment barrier. Each sensor is said to cover the portion of the barrier that intersects with its sensing area. Owing to incorrect initial position, or the death of some of the sensors, the barrier is not completely covered by the sensors. We employ a mobile robot to move the sensors to final positions on the barrier such that barrier coverage is guaranteed. We seek algorithms that minimize the length of the robot’s trajectory, since this allows the restoration of barrier coverage as soon as possible. We give an optimal linear-time offline algorithm that gives a minimum-length trajectory for a robot that starts at one end of the barrier and achieves the restoration of barrier coverage. We also study two different online models: one in which the online robot does not know the length of the barrier in advance, and the other in which the online robot knows it in advance. For the case when the online robot does not know the length of the barrier, we prove a tight bound of \(3/2\) on the competitive ratio, and we give a tight lower bound of \(5/4\) on the competitive ratio in the other case. Thus for each case we give an optimal online algorithm.


Line Segment Wireless Sensor Network Mobile Robot Optimal Trajectory Competitive Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: Proceedings of MobiCom 2007, pp. 75–86 (2007)Google Scholar
  2. 2.
    Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. Theor. Comput. Sci. 410(52), 5515–5528 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., der Heide, F.M. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Charikar, M., Khuller, S., Raghavachari, B.: Algorithms for capacitated vehicle routing. SIAM J. Comput. 31(3), 665–682 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  7. 7.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Stacho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Optimal online and offline algorithms for robot-assisted restoration of barrier coverage, 20 pages. arXiv, (2014)
  9. 9.
    Djugash, J., Singh, S., Kantor, G.A., Zhang, W.: Range-only SLAM for robots operating cooperatively with sensor networks. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2078–2084, May 2006Google Scholar
  10. 10.
    GKmM summer school 2012 website. Accessed 25 Jan 2014
  11. 11.
    Hesari, M.E., Kranakis, E., Krizanc, D., Morales-Ponce, O., Narayanan, L., Opatrny, J., Shende, S.: Distributed algorithms for barrier coverage using relocatable sensors. In: Proceedings of PODC 2013, pp. 383–392 (2013)Google Scholar
  12. 12.
    Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 221–237. Springer, New York (2008) CrossRefGoogle Scholar
  13. 13.
    Jung, B., Sukhatme, G.: Cooperative tracking using mobile robots and environment-embedded networked sensors. In: International Symposium on Computational Intelligence in Robotics and Automation, pp. 206–211 (2001)Google Scholar
  14. 14.
    Koubaa, A., Khelil, A. (eds.) Cooperative Robots and Sensor Networks. Studies in Computational Intelligence. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    Kropff, M., Reinl, C., Listmann, K., Petersen, K., Radkhah, K., Shaikh, F.K., Herzog, A., Strobel, A., Jacobi, D., von Stryk, O.: MM-ulator: towards a common evaluation platform for mixed mode environments. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 41–52. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of MobiCom 2005, pp. 284–298 (2005)Google Scholar
  17. 17.
    Robosense 2012 workshop website. Accessed 25 Jan 2014
  18. 18.
    Robosense 2013 workshop website. Accessed 25 Jan 2014
  19. 19.
    Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage of line-based deployed wireless sensor networks. In: Proceedings of IEEE INFOCOM 2009, pp. 127–135 (2009)Google Scholar
  20. 20.
    Seow, C.K., Seah, W.K.G., Liu, Z.: Hybrid mobile wireless sensor network cooperative localization. In: Proceedings of IEEE 22nd International Symposium on Intelligent Control, pp. 29–34 (2007)Google Scholar
  21. 21.
    Shi, W., Corriveau, J.-P.: A comprehensive review of sensor relocation. In: Proceedings of IEEE/ACM International Conference on Green Computing and Communications, pp. 780–785 (2010)Google Scholar
  22. 22.
    Teng, J., Bolbrock, T., Cao, G., La Porta, T.: Sensor relocation with mobile sensors: design, implementation, and evaluation. In: Proceedings of IEEE MASS, pp. 1–9 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. Czyzowicz
    • 1
  • E. Kranakis
    • 2
  • D. Krizanc
    • 3
  • L. Narayanan
    • 4
  • J. Opatrny
    • 4
  1. 1.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada

Personalised recommendations