Spatiotemporal Behavior Profiling: A Treasure Hunt Case Study

  • Victor de Graaff
  • Dieter Pfoser
  • Maurice van Keulen
  • Rolf A. De By
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9080)

Abstract

Trajectories have been providing us with a wealth of derived information such as traffic conditions and road network updates. This work focuses on deriving user profiles through spatiotemporal analysis of trajectory data to provide insight into the quality of information provided by users. The presented behavior profiling method assesses user participation characteristics in a treasure-hunt type event. Consisting of an analysis and a profiling phase, analysis involves a timeline and a stay-point analysis, as well as a semantic trajectory inspection relating actual and expected paths. The analysis results are then grouped around profiles that can be used to estimate the user performance in the activity. The proposed profiling method is evaluated by means of a student orientation treasure-hunt activity at the University of Twente, The Netherlands. The profiling method is used to predict the students’ gaming behavior by means of a simple team type classification, and a feature-based answer type classification.

Keywords

Behavior analysis Behavior prediction GPS data User generated content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, M., Karagiorgou, S., Pfoser, D., Wenk, C.: A comparison and evaluation of map construction algorithms using vehicle tracking data. GeoInformatica Journal (2015) (in press)Google Scholar
  2. 2.
    de Graaff, V., van Keulen, M., de By, R.A.: Towards geosocial recommender systems. In: 4th Intern. Workshop on Web Intelligence & Communities (WI&C 2012), Lyon, France. ACM, April 2012Google Scholar
  3. 3.
    Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Learning and inferring transportation routines. Artificial Intelligence 171(5), 311–331 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on gps data. In: Proceedings of the 10th International Conference on Ubiquitous Computing, pp. 312–321. ACM (2008)Google Scholar
  5. 5.
    Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 637–646. ACM (2009)Google Scholar
  6. 6.
    Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12–15, 2007, pp. 330–339 (2007)Google Scholar
  7. 7.
    Zheng, Y., Zhang, L., Xie, X., Ma, W.-Y.: Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of the 18th International Conference on World Wide Web, pp. 791–800. ACM (2009)Google Scholar
  8. 8.
    Spaccapietra, S., Parent, C., Damiani, M.L., de Macedo, J.A., Porto, F., Vangenot, C.: A conceptual view on trajectories. Data & Knowledge Engineering 65(1), 126–146 (2008)CrossRefGoogle Scholar
  9. 9.
    Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., Aberer, K.: SeMiTri: a framework for semantic annotation of heterogeneous trajectories. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 259–270. ACM (2011)Google Scholar
  10. 10.
    Guc, B., May, M., Saygin, Y., Körner, C.: Semantic annotation of gps trajectories. In: 11th AGILE International Conference on Geographic Information Science (2008)Google Scholar
  11. 11.
    Zheng, Y., Zhou, X.: Computing with spatial trajectories. Springer (2011)Google Scholar
  12. 12.
    Parent, C., Spaccapietra, S., Renso, C., Andrienko, G., Andrienko, N., Bogorny, V., Damiani, M.L., Gkoulalas-Divanis, A., Macedo, J., Pelekis, N., et al.: Semantic trajectories modeling and analysis. ACM Computing Surveys (CSUR) 45(4), 42 (2013)CrossRefGoogle Scholar
  13. 13.
    Jiang, S., Fiore, G.A., Yang, Y., Ferreira Jr., J., Frazzoli, E., González, M.C.: A review of urban computing for mobile phone traces: current methods, challenges and opportunities. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, p. 2. ACM (2013)Google Scholar
  14. 14.
    Allen, S., Graupera, V., Lundrigan, L.: PhoneGap. In: Pro Smartphone Cross-Platform Development, pp. 131–152. Springer (2010)Google Scholar
  15. 15.
    de Graaff, V., de By, R.A., van Keulen, M., Flokstra, J.: Point of interest to region of interest conversion. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL GIS 2013), Orlando, FL, USA, (New York), pp. 378–381. ACM, November 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victor de Graaff
    • 1
  • Dieter Pfoser
    • 2
  • Maurice van Keulen
    • 1
  • Rolf A. De By
    • 3
  1. 1.Department of Computer ScienceUniversity of TwenteEnschedeThe Netherlands
  2. 2.George Mason UniversityFairfaxUSA
  3. 3.Faculty of Geo-Information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands

Personalised recommendations