Advertisement

Graph Based Lymphatic Vessel Wall Localisation and Tracking

  • Ehab EssaEmail author
  • Xianghua Xie
  • Jonathan-Lee Jones
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

We present a novel hidden Markov model (HMM) based approach to segment and track the lymph vessel in confocal microscopy images. The vessel borders are parameterised by radial basis functions (RBFs) so that the number of tracking points are reduced to a very few. The proposed method tracks the hidden states that determine the border location along a set of normal lines obtained from the previous frame. The border observation is derived from edge-based features using steerable filters. Two Gaussian probability distributions for the vessel border and background are used to infer the emission probability. The transition probability is learnt by using the Baum-Welch algorithm. A new optimisation method for determining the best sequence of the hidden states is introduced. We transform the segmentation problem into a minimisation of s-excess graph cost. Each node in the graph corresponds to one state, and the weight for each node is defined using its emission probability. The inter-relation between neighbouring nodes is defined using the transition probability. Its optimal solution can be found in polynomial time using the s-t cut algorithm. Qualitative and quantitative analysis of the method on lymphatic vessel segmentation show superior performance of the proposed method compared to the traditional Viterbi algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mansor, S., Noble, J.: Local wall motion classification of stress echocardiography using a hidden markov model approach. In: ISBI (2008)Google Scholar
  2. 2.
    Beymer, D., Konolige, K.: Real-time tracking of multiple people using continuous detection. In: ICCV Frame-Rate Workshop (1999)Google Scholar
  3. 3.
    Xie, L., Zhu, G., Wang, Y., Xu, H., Zhang, Z.: Real-time vehicles tracking based on kalman filter in a video-based ITS. In: ICCCS (2005)Google Scholar
  4. 4.
    Abolmaesumi, P., Sirouspour, M., Salcudean, S.: Real-time extraction of carotid artery contours from ultrasound images. In: CBMS (2000)Google Scholar
  5. 5.
    Cheng, J., Foo, S., Krishnan, S.M.: Watershed-presegmented snake for boundary detection and tracking of left ventricle in echocardiographic images. IEEE T-ITB 10(2), 414–416 (2006)Google Scholar
  6. 6.
    Terzopoulos, D., Szeliski, R.: Active vision. MIT Press, 3–20 (1993)Google Scholar
  7. 7.
    Isard, M., Blake, A.: Condensation–conditional density propagation for visual tracking. IJCV 29(1), 5–28 (1998)CrossRefGoogle Scholar
  8. 8.
    Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Rui, Y., Huang, T.: JPDAF based HMM for real-time contour tracking. In: CVPR (2001)Google Scholar
  10. 10.
    Chen, Y., Rui, Y., Huang, T.: Multicue HMM-UKF for real-time contour tracking. IEEE PAMI 28(9), 1525–1529 (2006)CrossRefGoogle Scholar
  11. 11.
    Sargin, M., Altinok, A., Manjunath, B., Rose, K.: Variable length open contour tracking using a deformable trellis. IEEE TIP 20(4), 1023–1035 (2011)MathSciNetGoogle Scholar
  12. 12.
    Fei, H., Reid, I.D.: Joint bayes filter: A hybrid tracker for non-rigid hand motion recognition. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 497–508. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Toyama, K., Blake, A.: Probabilistic tracking with exemplars in a metric space. IJCV 48(1), 9–19 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Breit, H., Rigoll, G.: Improved person tracking using a combined pseudo-2D-HMM and kalman filter approach with automatic background state adaptation. In: ICIP (2001)Google Scholar
  15. 15.
    Turk, G., O’brien, J.F.: Modelling with implicit surfaces that interpolate. ACM ToG 21(4), 855–873 (2002)CrossRefGoogle Scholar
  16. 16.
    Chen, Y., Huang, T., Rui, Y.: Parametric contour tracking using unscented kalman filter. In: ICIP (2002)Google Scholar
  17. 17.
    Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE PAMI 13(9), 891–906 (1991)CrossRefGoogle Scholar
  18. 18.
    Hochbaum, D.S.: Anniversary article: Selection, provisioning, shared fixed costs, maximum closure, and implications on algorithmic methods today. Manage. Sci. 50(6), 709–723 (2004)CrossRefGoogle Scholar
  19. 19.
    Wu, X., Chen, D.Z.: Optimal net surface problems with applications. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1029–1042. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Li, K., Wu, X., Chen, D.Z., Sonka, M.: Optimal surface segmentation in volumetric images-a graph-theoretic approach. IEEE PAMI 28(1), 119–134 (2006)CrossRefGoogle Scholar
  21. 21.
    Song, Q., Bai, J., Garvin, M., Sonka, M., Buatti, J., Wu, X.: Optimal multiple surface segmentation with shape and context priors. IEEE TMI 32(2), 376–386 (2013)Google Scholar
  22. 22.
    Essa, E., Xie, X., Sazonov, I., Nithiarasu, P.: Automatic IVUS media-adventitia border extraction using double interface graph cut segmentation. In: ICIP, pp. 69–72 (2011)Google Scholar
  23. 23.
    Essa, E., Xie, X., Sazonov, I., Nithiarasu, P., Smith, D.: Shape prior model for media-adventitia border segmentation in IVUS using graph cut. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 114–123. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Hochbaum, D.S.: An efficient algorithm for image segmentation, markov random fields and related problems. J. ACM 48(4), 686–701 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  26. 26.
    Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel enhancing diffusion: A scale space representation of vessel structures. MIA 10(6), 815–825 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Swansea UniversitySwanseaUK

Personalised recommendations