Improving Hausdorff Edit Distance Using Structural Node Context

  • Andreas Fischer
  • Seiichi Uchida
  • Volkmar Frinken
  • Kaspar Riesen
  • Horst Bunke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9069)

Abstract

In order to cope with the exponential time complexity of graph edit distance, several polynomial-time approximation algorithms have been proposed in recent years. The Hausdorff edit distance is a quadratic-time matching procedure for labeled graphs which reduces the edit distance to a correspondence problem between local substructures. In its original formulation, nodes and their adjacent edges have been considered as local substructures. In this paper, we integrate a more general structural node context into the matching procedure based on hierarchical subgraphs. In an experimental evaluation on diverse graph data sets, we demonstrate that the proposed generalization of Hausdorff edit distance can significantly improve the accuracy of graph classification while maintaining low computational complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borgwardt, K., Ong, C., Schönauer, S., Vishwanathan, S., Smola, A., Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21(1), 47–56 (2005)CrossRefGoogle Scholar
  2. 2.
    Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  3. 3.
    Schenker, A., Last, M., Bunke, H., Kandel, A.: Classification of web documents using graph matching. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 475–496 (2004)CrossRefGoogle Scholar
  4. 4.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  5. 5.
    Wilson, R., Hancock, E., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(7), 1112–1124 (2005)CrossRefGoogle Scholar
  6. 6.
    Neuhaus, M., Bunke, H.: An error-tolerant approximate matching algorithm for attributed planar graphs and its application to fingerprint classification. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 180–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Dickinson, P., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Analysis and Applications 7(3), 243–254 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–363 (1983)CrossRefMATHGoogle Scholar
  9. 9.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)CrossRefMATHGoogle Scholar
  10. 10.
    Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of the Association for Computing Machinery 21(1), 168–173 (1974)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image and Vision Computing 27(4), 950–959 (2009)CrossRefGoogle Scholar
  12. 12.
    Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistic Quarterly 2, 83–97 (1955)CrossRefGoogle Scholar
  13. 13.
    Riesen, K., Fischer, A., Bunke, H.: Estimating graph edit distance using lower and upper bounds of bipartite approximations. Int. Journal of Pattern Recognition and Artificial Intelligence 29(2), 1–27 (2015)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Serratosa, F.: Fast computation of bipartite graph matching. Pattern Recognition Letters 45, 244–250 (2014)CrossRefGoogle Scholar
  15. 15.
    Fischer, A., Suen, C., Frinken, V., Riesen, K., Bunke, H.: Approximation of graph edit distance based on Hausdorff matching. Pattern Recognition 48(2), 331–343 (2015)CrossRefGoogle Scholar
  16. 16.
    Huttenlocher, D.P., Klanderman, G.A., Kl, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)CrossRefGoogle Scholar
  17. 17.
    Raveaux, R., Burie, J., Ogier, J.: A graph matching method and a graph matching distance based on subgraph assignments. Pattern Recognition Letters 31(5), 394–406 (2010)CrossRefGoogle Scholar
  18. 18.
    Gaüzère, B., Bougleux, S., Riesen, K., Brun, L.: Approximate graph edit distance guided by bipartite matching of bags of walks. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 73–82. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Fischer
    • 1
    • 2
  • Seiichi Uchida
    • 3
  • Volkmar Frinken
    • 3
  • Kaspar Riesen
    • 4
  • Horst Bunke
    • 5
  1. 1.Department of InformaticsUniversity of FribourgFribourgSwitzerland
  2. 2.Institute of Complex SystemsUniversity of Applied Sciences and Arts, Western SwitzerlandFribourgSwitzerland
  3. 3.Faculty of Information Science and Electrical EngineeringKyushu UniversityNishi-kuJapan
  4. 4.Institute for Informations SystemsUniversity of Applied Sciences and Arts, Northwestern SwitzerlandOltenSwitzerland
  5. 5.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations