A Refined Complexity Analysis of Finding the Most Vital Edges for Undirected Shortest Paths

  • Cristina Bazgan
  • André  Nichterlein
  • Rolf Niedermeier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9079)


We study the NP-hard Shortest Path Most Vital Edges problem arising in the context of analyzing network robustness. For an undirected graph with positive integer edge lengths and two designated vertices \(s\) and \(t\), the goal is to delete as few edges as possible in order to increase the length of the (new) shortest \(st\)-path as much as possible. This scenario has been mostly studied from the viewpoint of approximation algorithms and heuristics, while we particularly introduce a parameterized and multivariate point of view. We derive refined tractability as well as hardness results, and identify numerous directions for future research. Among other things, we show that increasing the shortest path length by at least one is much easier than to increase it by at least two.


Short Path Minimum Span Tree Vertex Cover Cluster Graph Edge Deletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Noy, A., Khuller, S., Schieber, B.: The complexity of finding most vital arcs and nodes. Technical report, College Park, MD, USA (1995)Google Scholar
  2. 2.
    Bazgan, C., Toubaline, S., Vanderpooten, D.: Efficient determination of the \(k\) most vital edges for the minimum spanning tree problem. Computers and Operations Research 39(11), 2888–2898 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bazgan, C., Toubaline, S., Vanderpooten, D.: Critical edges/nodes for the minimum spanning tree problem: complexity and approximation. Journal of Combinatorial Optimization 26(1), 178–189 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. Journal of Discrete Algorithms 27, 54–65 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A Fast Branching Algorithm for Cluster Vertex Deletion. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 111–124. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Doucha, M., Kratochvíl, J.: Cluster Vertex Deletion: A Parameterization between Vertex Cover and Clique-Width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer (2013)Google Scholar
  8. 8.
    Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algorithmics: Parameter ecology and the deconstruction of computational complexity. European Journal of Combinatorics 34(3), 541–566 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  10. 10.
    Frederickson, G.N., Solis-Oba, R.: Increasing the weight of minimum spanning trees. In: Proc. 7th SODA, pp. 539–546 (1996)Google Scholar
  11. 11.
    Fulkerson, D., Harding, G.C.: Maximizing the minimum source-sink path subject to a budget constraint. Mathematical Programming 13, 116–118 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)Google Scholar
  13. 13.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  14. 14.
    Guo, J., Shrestha, Y.R.: Parameterized Complexity of Edge Interdiction Problems. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) COCOON 2014. LNCS, vol. 8591, pp. 166–178. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Israeli, E., Wood, R.K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Khachiyan, L., Boros, E., Borys, K., Elbassioni, K.M., Gurvich, V., Rudolf, G., Zhao, J.: On short paths interdiction problems: Total and node-wise limited interdiction. Theory of Computing Systems 43(2), 204–233 (2008)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Komusiewicz, C., Niedermeier, R.: New Races in Parameterized Algorithmics. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 19–30. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Kratsch, S.: Recent developments in kernelization: A survey. Bulletin of the EATCS 113, 58–97 (2014)MathSciNetGoogle Scholar
  19. 19.
    Liang, W.: Finding the \(k\) most vital edges with respect to minimum spanning trees for fixed \(k\). Discrete Applied Mathematics 113(2–3), 319–327 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Malik, K., Mittal, A., Gupta, S.K.: The \(k\) most vital arcs in the shortest path problem. Operations Research Letters 8, 223–227 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Information Processing Letters 79(2), 81–85 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  23. 23.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, vol. 5. LIPIcs, pp. 17–32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)Google Scholar
  24. 24.
    Pan, F., Schild, A.: Interdiction Problems on Planar Graphs. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 317–331. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  25. 25.
    Sorge, M., Weller, M.: The graph parameter hierarchy. Manuscript (2013).
  26. 26.
    Wood, R.K.: Deterministic network interdiction. Mathematical and Computer Modeling 17(2), 1–18 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Cristina Bazgan
    • 1
    • 2
  • André  Nichterlein
    • 3
  • Rolf Niedermeier
    • 3
  1. 1.PSL, Université Paris-Dauphine, LAMSADE UMR CNRSParisFrance
  2. 2.Institut Universitaire de FranceParisFrance
  3. 3.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations