Evacuating Robots from a Disk Using Face-to-Face Communication (Extended Abstract)

  • J. Czyzowicz
  • K. GeorgiouEmail author
  • E. Kranakis
  • L. Narayanan
  • J. Opatrny
  • B. Vogtenhuber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9079)


Assume that two robots are located at the centre of a unit disk. Their goal is to evacuate from the disk through an exit at an unknown location on the boundary of the disk. At any time the robots can move anywhere they choose on the disk, independently of each other, with maximum speed \(1\). The robots can cooperate by exchanging information whenever they meet. We study algorithms for the two robots to minimize the evacuation time: the time when both robots reach the exit. In [9] the authors gave an algorithm defining trajectories for the two robots yielding evacuation time at most \(5.740\) and also proved that any algorithm has evacuation time at least \(3+ \frac{\pi }{4} + \sqrt{2} \approx 5.199\). We improve both the upper and lower bounds on the evacuation time of a unit disk. Namely, we present a new non-trivial algorithm whose evacuation time is at most \(5.628\) and show that any algorithm has evacuation time at least \(3+ \frac{\pi }{6} + \sqrt{3} \approx 5.255\). To achieve the upper bound, we designed an algorithm which non-intuitively proposes a forced meeting between the two robots, even if the exit has not been found by either of them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlswede, R., Wegener, I.: Search problems. Wiley-Interscience (1987)Google Scholar
  2. 2.
    Alpern, S., Beck, A.: Asymmetric rendezvous on the line is a double linear search problem. Mathematics of Operations Research 24(3), 604–618 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Springer, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Yates, R.B., Culberson, J., Rawlins, G.: Searching in the plane. Information and Computation 106(2), 234–252 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Beck, A.: On the linear search problem. Israel Journal of Mathematics 2(4), 221–228 (1964)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bellman, R.: An optimal search. Siam Review 5(3), 274–274 (1963)CrossRefGoogle Scholar
  7. 7.
    Benkoski, S., Monticino, M., Weisinger, J.: A survey of the search theory literature. Naval Research Logistics (NRL) 38(4), 469–494 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bonato, A., Nowakowski, R.: The game of cops and robbers on graphs. American Mathematical Soc. (2011)Google Scholar
  9. 9.
    Czyzowicz, J., Gasieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating using face-to-face communication. CoRR, abs/1501.04985 (2015)Google Scholar
  11. 11.
    Dobbie, J.: A survey of search theory. Operations Research 16(3), 525–537 (1968)CrossRefzbMATHGoogle Scholar
  12. 12.
    Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS problem with asynchronous finite state machines. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  13. 13.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoretical Computer Science 337(1), 147–168 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection complexity and performance when searching the plane without communication. In: Proceedings of PODC, pp. 252–261 (2014)Google Scholar
  15. 15.
    López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: Proceedings of CCCG, pp. 125–128 (2001)Google Scholar
  16. 16.
    Nahin, P.: Chases and Escapes: The Mathematics of Pursuit and Evasion. Princeton University Press (2012)Google Scholar
  17. 17.
    Stone, L.: Theory of optimal search. Academic Press, New York (1975)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. Czyzowicz
    • 1
  • K. Georgiou
    • 2
    Email author
  • E. Kranakis
    • 3
  • L. Narayanan
    • 4
  • J. Opatrny
    • 4
  • B. Vogtenhuber
    • 5
  1. 1.Dépt. d’InformatiqueUniversité du Québec en OutaouaisGatineauCanada
  2. 2.Department of Combinatorics OptimizationUniversity of WaterlooWaterlooCanada
  3. 3.School of Computer ScienceCarleton UniversityOttawaCanada
  4. 4.Department of Computer Science and Software EngineeringConcordia UniversityMontrealCanada
  5. 5.Institute for SoftwaretechnologyGraz University of TechnologyGrazAustria

Personalised recommendations