Advertisement

Video-Based Access Control by Automatic License Plate Recognition

  • Emanuel Di Nardo
  • Lucia Maddalena
  • Alfredo Petrosino
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 37)

Abstract

We report an access control system based on automatic license plate recognition, consisting of three main modules for acquisition, extraction, and recognition. The basic idea is to couple the online learning of a neural background model with a stopped foreground subtraction mechanism to efficiently provide a subset of relevant video frames where to look for. Another key point is the use of matching the entire license plate ROI with those stored in a database of authorized license plates, based on suitable features and validation tests. Experimental results confirm that the proposed system attains overall performance comparable with that of the state-of-the-art ALPR methods.

Keywords

Automatic License Plate Recognition Access Control System Neural-based Vehicle Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anagnostopoulos, C.N.: License plate recognition: A brief tutorial. IEEE Intelligent Transportation Systems Magazine 6(1), 59–67 (2014)CrossRefGoogle Scholar
  2. 2.
    Anagnostopoulos, C.N., Anagnostopoulos, I., Psoroulas, I., Loumos, V., Kayafas, E.: License plate recognition from still images and video sequences: A survey. IEEE Transactions on Intelligent Transportation Systems 9(3), 377–391 (2008)CrossRefGoogle Scholar
  3. 3.
    Ashtari, A., Nordin, M., Fathy, M.: An iranian license plate recognition system based on color features. IEEE Transactions on Intelligent Transportation Systems (2014) (to appear)Google Scholar
  4. 4.
    Bailey, D., Irecki, D., Lim, B.K., Yang, L.: Test bed for number plate recognition applications. In: Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, pp. 501–503 (2002)Google Scholar
  5. 5.
    Caner, H., Gecim, H., Alkar, A.: Efficient embedded neural-network-based license plate recognition system. IEEE Transactions on Vehicular Technology 57(5), 2675–2683 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, Z.X., Liu, C.Y., Chang, F.L., Wang, G.Y.: Automatic license-plate location and recognition based on feature salience. IEEE Transactions on Vehicular Technology 58(7), 3781–3785 (2009)CrossRefGoogle Scholar
  7. 7.
    Comelli, P., Ferragina, P., Granieri, M., Stabile, F.: Optical recognition of motor vehicle license plates. IEEE Transactions on Vehicular Technology 44(4), 790–799 (1995)CrossRefGoogle Scholar
  8. 8.
    Dasgupta, S., Sinha, K.: Randomized partition trees for exact nearest neighbor search. CoRR abs/1302.1948 (2013)Google Scholar
  9. 9.
    Dashtban, M.H., Dashtban, Z., Bevrani, H.: A novel approach for vehicle license plate localization and recognition. Int. J. Comput. Appl. 26(11), 22–30 (2011)Google Scholar
  10. 10.
    Dlagnekov, L., Belongie, S.: Recognizing cars. Tech. Rep. CS2005-0833, CSE, UCSD (2005)Google Scholar
  11. 11.
    Du, S., Ibrahim, M., Shehata, M., Badawy, W.: Automatic license plate recognition (ALPR): A state-of-the-art review. IEEE Transactions on Circuits and Systems for Video Technology 23(2), 311–325 (2013)CrossRefGoogle Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Giannoukos, I., Anagnostopoulos, C.N., Loumos, V., Kayafas, E.: Operator context scanning to support high segmentation rates for real time license plate recognition. Pattern Recognition 43(11), 3866–3878 (2010)MATHCrossRefGoogle Scholar
  14. 14.
    Hsu, G.S., Chen, J.C., Chung, Y.Z.: Application-oriented license plate recognition. IEEE Transactions on Vehicular Technology 62(2), 552–561 (2013)CrossRefGoogle Scholar
  15. 15.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)MATHCrossRefGoogle Scholar
  16. 16.
    Huang, Y.P., Chen, C.H., Chang, Y.T., Sandnes, F.E.: An intelligent strategy for checking the annual inspection status of motorcycles based on license plate recognition. Expert Systems with Applications 36(5), 9260–9267 (2009)CrossRefGoogle Scholar
  17. 17.
    Jiao, J., Ye, Q., Huang, Q.: A configurable method for multi-style license plate recognition. Pattern Recognition 42(3), 358–369 (2009)MATHCrossRefGoogle Scholar
  18. 18.
    Kasaei, S.H., Kasaei, S.M., Kasaei, S.A.: New morphology-based method for robust iranian car plate detection and recognition. Int. J. Comput. Theory Eng. 2(2), 264–268 (2010)CrossRefGoogle Scholar
  19. 19.
    Kim, K.K., Kim, K., Kim, J., Kim, H.: Learning-based approach for license plate recognition. In: Proceedings of the 2000 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing X, vol. 2, pp. 614–623 (2000)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Lowe, D.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  22. 22.
    Maddalena, L., Petrosino, A.: Stopped object detection by learning foreground model in videos. IEEE Trans. Neural Net. and Learn. Sys. 24(5), 723–735 (2013)CrossRefGoogle Scholar
  23. 23.
    Maddalena, L., Petrosino, A.: The 3dSOBS+ algorithm for moving object detection. Computer Vision and Image Understanding 122(0), 65–73 (2014)CrossRefGoogle Scholar
  24. 24.
    Martinsky, O.: Algorithmic and mathematical principles of automatic number plate recognition systems (2006), http://javaanpr.sourceforge.net/
  25. 25.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  26. 26.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)Google Scholar
  27. 27.
    Thome, N., Vacavant, A., Robinault, L., Miguet, S.: A cognitive and video-based approach for multinational license plate recognition. Machine Vision and Applications 22(2), 389–407 (2011)CrossRefGoogle Scholar
  28. 28.
    Wang, M.L., Liu, Y.H., Liao, B.Y., Lin, Y.S., Horng, M.F.: A vehicle license plate recognition system based on spatial/frequency domain filtering and neural networks. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part III. LNCS, vol. 6423, pp. 63–70. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Yu, G., Morel, J.M.: A fully affine invariant image comparison method. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009, pp. 1597–1600 (April 2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emanuel Di Nardo
    • 1
  • Lucia Maddalena
    • 2
  • Alfredo Petrosino
    • 1
  1. 1.Department of Science and TechnologyUniversity of Naples ParthenopeNaplesItaly
  2. 2.Institute for High-Performance Computing and NetworkingNational Research CouncilNaplesItaly

Personalised recommendations