Solving Nonconvex Optimization Problems in Systems and Control: A Polynomial B-spline Approach

  • Deepak GawaliEmail author
  • Ahmed Zidna
  • Paluri S. V. Nataraj
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 359)


Many problems in systems and control engineering can be formulated as constrained optimization problems with multivariate polynomial objective functions. We propose algorithms based on polynomial B-spline form for constrained global optimization of multivariate polynomial functions. The proposed algorithms are based on a branch-and-bound framework. We tested the proposed basic constrained global optimization algorithms by considering three test problems from systems and control. The obtained results agree with those reported in literature.


Polynomial B-spline Global optimization Polynomial optimization Constrained optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henrion, D., Lasserre, J.-B.: Solving Nonconvex Optimization Problems. IEEE Control Systems 24, 72–83 (2004)CrossRefGoogle Scholar
  2. 2.
    Lin, Q., Rokne, J.G.: Methods for Bounding the Range of a Polynomial. J. Computational and Applied Mathematics 58, 193–199 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lin, Q., Rokne, J.G.: Interval Approximation of Higher Order to the Ranges of Functions. Computers & Mathematics with Applications 31, 101–109 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Michel, D., Mraoui, H., Sbibih, D., Zidna, A.: Computing the Range of Values of Real Functions using B-spline Form. Applied Mathematics and Computation 233, 85–102 (2014)CrossRefMathSciNetGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Floudas, C.A.: Handbook of test problems in local and global optimization (1999)Google Scholar
  8. 8.
    Chesi, G., Garulli, A., Tesi, A.: Solving Quadratic Distance Problems: An LMI Based Approach. IEEE Trans. Automatic Control 48, 200–212 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Chesi, G., Tesi, A., Vicinio, A., Genesio, R.: An LMI Approach to Constrained Optimization with Homogenous Forms. Systems and Control Letters 42, 11–19 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Chesi, G.: Estimating the Domain of Attraction via Union of Continuous Families of Lyapunov Estimates. Systems and Control Letters 56, 326–333 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Sastry, S.: Nonlinear Systems Analysis, Stability and Control. Springer, Berlin (1999)zbMATHGoogle Scholar
  12. 12.
    Parrilo, P.A.: Structured Semidefinite Programs and Semialgebric Geometric Methods in Robustness and Optimization. PhD thesis, California Insitiute of Technology, Pasadena, California (2000)Google Scholar
  13. 13.
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization (1995)Google Scholar
  14. 14.
    Hansen, E., Walster, G.W.: Global Optimization using Interval Analysis: Revised and Expanded, vol. 264. CRC Press (2003)Google Scholar
  15. 15.
    Jaulin, L.: Applied Interval Analysis: with Examples in Parameter and State Estimation, Robust Control and Robotics, vol. 1. Springer (2001)Google Scholar
  16. 16.
    Kearfott, R.B.: Rigorous Global Search Continuous Problems. Springer (1996)Google Scholar
  17. 17.
    Vaidyanathan, R., El-Halwagi, M.: Global Optimization of Nonconvex Nonlinear Programs via Interval Analysis. Computers & Chemical Engineering 18, 889–897 (1994)CrossRefGoogle Scholar
  18. 18.
    Lyche, T., Morken, K.: Spline Methods Draft. Department of Informatics, Centre of Mathematics for Applications, University of Oslo (2008)Google Scholar
  19. 19.
    Park, S.: Approximate Branch-and-Bound Global Optimization using B-spline Hypervolumes. Advances in Engineering Software 45, 11–20 (2012)CrossRefGoogle Scholar
  20. 20.
    Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions. Ellis Horwood Limited Publishers, Chichester (1984)zbMATHGoogle Scholar
  21. 21.
    Patil, B.V., Nataraj, P.S.V., Bhartiya, S.: Global Optimization of Mixed-Integer Nonlinear (Polynomial) Programming Problems: the Bernstein Polynomial Approach. Computing 94, 325–343 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Ratschek, H., Rokne, J.: New Computer Methods for Global Optimization. Ellis Horwood series in Mathematics and its Applications. Horwood (1988)Google Scholar
  23. 23.
    Rogers, D.F.: An Introduction to NURBS: With Historical Perspective. Morgan Kaufmann (2001)Google Scholar
  24. 24.
    Mathworks Inc. MATLAB version (R 2012 b) (2012)Google Scholar
  25. 25.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation, vol. 303. Springer Science & Business Media (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Deepak Gawali
    • 1
    • 3
    Email author
  • Ahmed Zidna
    • 2
  • Paluri S. V. Nataraj
    • 3
  1. 1.Vidyavardhini’s College of Engineering and TechnologyMaharashtraIndia
  2. 2.Theoretical and Applied Computer Science LaboratoryUniversity of LorraineNancyFrance
  3. 3.Systems and control EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations