Optimising Configurations of KUKA LWR4+ Manipulator for Calibration with Optical CMM

  • Sergey A. KolyubinEmail author
  • Leonid Paramonov
  • Anton S. Shiriaev
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 33)


This work is aimed at a comprehensive discussion of experiments and numerical procedures for the open-loop geometric calibration of the KUKA LWR4+ redundant robotic arm, when a full 6D end-effector’s pose is measured using Nikon K610 optical coordinate measuring machine (CMM). The later includes a comparative analysis of three different conjugate-type and meta-heuristic iterative algorithms used for numerical optimization of two observability indexes associated with Jacobian properties of the manipulator kinematics. While the former is based an original LEDs fixture design, which geometry is important for organization of the experiment. To the best of our knowledge, such integrated efforts are new for the KUKA robot widely used in robotics research community.


Calibration Kinematics Optimization Optical coordinate measuring machine (CMM) 


  1. 1.
    Borm, J.H., Menq, C.H.: Determination of optimal measurement configurations for robot calibration based on observability measure. J. Robot. Syst. 10, 51–63 (1991)Google Scholar
  2. 2.
    Daney, D., Papegay, Y., Madeline, B.: Choosing measurement poses for robot calibration with the local convergence method and Tabu search. Int. J. Robot. Res. 24, 501–518 (2005)CrossRefGoogle Scholar
  3. 3.
    Driels, M.R., Pathre, U.S.: Significance of observation strategy on the design of robot calibration experiments. J. Robot. Syst. 7, 197–223 (1990)CrossRefGoogle Scholar
  4. 4.
    Hollerbach, J.M., Wampler, C.W.: The calibration index and taxonomy for robot kinematic calibration methods. Int. J. Robot. Res. 15(6), 573–591 (1996)CrossRefGoogle Scholar
  5. 5.
    Khalil, W., Besnard, S., Lemoine, P.: Comparison study of the geometric parameters calibration methods. Int. J. Robot. Autom. 15(2), 56–67 (2000)Google Scholar
  6. 6.
    Khalil, W., Gautier, M., Enguehard, C.: Identifiable parameters and optimum configurations for robots calibration. Robotica 9, 63–70 (1991)CrossRefGoogle Scholar
  7. 7.
    Klimchik, A., Pashkevich, A., Wu, Y., Caro, S., Furet, B.: Design of calibration experiments for identification of manipulator elastostatic parameters. J. Mech. Eng. Autom. 2, 531–542 (2012)Google Scholar
  8. 8.
    Marie, S., Courteille, E., Maurine, P.: Elasto-geometrical modeling and calibration of robot manipulators: application to machining and forming applications. Mech. Mach. Theory Elsevier 69, 13–43 (2013)Google Scholar
  9. 9.
    Renders, J.-M., Rossignol, E., Becquet, M., Hanus, R.: Kinematic calibration and geometrical parameter identification for robots. IEEE Trans. Robot. Autom. 7(6), 721–732 (1991)CrossRefGoogle Scholar
  10. 10.
    Schreiber, G., Stemmer, A., Bischoff, R.: The fast research interface for the KUKA lightweight robot. IEEE ICRA 2010 Workshop on Innovative Robot Control Architectures (2010)Google Scholar
  11. 11.
    van den Bossche, A.: Procedure for determining the dynamic behavior of a vehicle on a test bench, US Patent 6,748,796 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sergey A. Kolyubin
    • 1
    Email author
  • Leonid Paramonov
    • 1
  • Anton S. Shiriaev
    • 1
  1. 1.Department of Engineering CyberneticsNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations