Advertisement

Scalagon: An Efficient Skyline Algorithm for All Seasons

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9050)

Abstract

Skyline queries are well-known in the database community and there are many algorithms for the computation of the Pareto frontier. The most prominent algorithms are based on a block-nested-loop style tuple-to-tuple comparison (BNL). Another approach exploits the lattice structure induced by a Skyline query over low-cardinality domains. In this paper, we present Scalagon, an algorithm which combines the ideas of the lattice approach and a BNL-style algorithm to evaluate Skylines on arbitrary domains. Since multicore processors are going mainstream, we also present a parallel version of Scalagon. We demonstrate through extensive experimentation on synthetic and real datasets that our algorithm can result in a significant performance advantage over existing techniques.

Keywords

Skyline High-cardinality Pre-filter Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE 2001 Proceedings of the 17th International Conference on Data Engineering, pp. 421–430. IEEE Computer Society, Washington, DC (2001)Google Scholar
  2. 2.
    Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline Queries, Front and Back. SIGMOD Rec. 42(3), 6–18 (2013)CrossRefGoogle Scholar
  3. 3.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB 2002 Proceedings of the 28th International Conference on Very Large Data Bases, pp. 275–286. VLDB Endowment (2002)Google Scholar
  4. 4.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2003 Proceedings of the 19th International Conference on Data Engineering, pp. 717–816 (2003)Google Scholar
  5. 5.
    Godfrey, P., Shipley, R., Gryz, J.: Algorithms and Analyses for Maximal Vector Computation. The VLDB Journal 16(1), 5–28 (2007)CrossRefGoogle Scholar
  6. 6.
    Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  7. 7.
    Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing skyline queries for scalable distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  8. 8.
    Cosgaya-Lozano, A., Rau-Chaplin, A., Zeh, N.: Parallel computation of skyline queries. In: HPCS 2007 Proceedings of the 21st International Symposium on High Performance Computing Systems and Applications, p. 12. IEEE Computer Society, Washington, DC (2007)Google Scholar
  9. 9.
    Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: AGiDS: a grid-based strategy for distributed skyline query processing. In: Hameurlain, A., Tjoa, A.M. (eds.) Globe 2009. LNCS, vol. 5697, pp. 12–23. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Gao, Y., Chen, G.-C., Chen, L., Chen, C.: Parallelizing progressive computation for skyline queries in multi-disk environment. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 697–706. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  11. 11.
    Park, S., Kim, T., Park, J., Kim, J., Im, H.: Parallel Skyline Computation on Multicore Architectures. In: ICDE 2009 Proceedings of the 2009 IEEE International Conference on Data Engineering, pp. 760–771. IEEE Computer Society, Washington, DC (2009)Google Scholar
  12. 12.
    Selke, J., Lofi, C., Balke, W.-T.: Highly scalable multiprocessing algorithms for preference-based database retrieval. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5982, pp. 246–260. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  13. 13.
    Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. In: ICDT 2012 Proceedings of the 15th International Conference on Database Theory, pp. 274–284. ACM, New York (2012)Google Scholar
  14. 14.
    Liknes, S., Vlachou, A., Doulkeridis, C., Nørvåg, K.: APSkyline: improved skyline computation for multicore architectures. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp. 312–326. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Endres, M., Kießling, W.: High parallel skyline computation over low-cardinality domains. In: Manolopoulos, Y., Trajcevski, G., Kon-Popovska, M. (eds.) ADBIS 2014. LNCS, vol. 8716, pp. 97–111. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Tan, K.-L., Eng, P.-K., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB 2001 Proceedings of the 27th International Conference on Very Large Data Bases, pp. 301–310. Morgan Kaufmann Publishers Inc, San Francisco (2001)Google Scholar
  17. 17.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: SIGMOD 2003 Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 467–478. ACM, New York (2003)Google Scholar
  18. 18.
    Lee, K., Zheng, B., Li, H., Lee, W.-C.: Approaching the skyline in Z order. In: VLDB 2007 Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 279–290. VLDB Endowment (2007)Google Scholar
  19. 19.
    Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-cardinality domains. In: VLDB 2007 Proceedings of the 33rd International Conference on Very Large Data Bases, pp. 267–278. VLDB Endowment (2007)Google Scholar
  20. 20.
    Preisinger, T., Kießling, W.: The hexagon algorithm for evaluating pareto preference queries. In: MPref 2007 Proceedings of the 3rd Multidisciplinary Workshop on Advances in Preference Handling (in conjunction with VLDB 2007) (2007)Google Scholar
  21. 21.
    Lee, J., Hwang, S.-W.: BSkyTree: scalable skyline computation using a balanced pivot selection. In: EDBT 2010 Proceedings of the 13th International Conference on Extending Database Technology, pp. 195–206. ACM, New York (2010)Google Scholar
  22. 22.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: SIGMOD 2001 Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, vol. 30, pp. 37–46. ACM, New York, May 2001Google Scholar
  24. 24.
    Aggarwal, C.C.: Outlier Analysis. Springer, New York (2013)CrossRefMATHGoogle Scholar
  25. 25.
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  26. 26.
    Bentley, J.L.: Programming Pearls. Addison-Wesley (2000)Google Scholar
  27. 27.
  28. 28.
    Shang, H., Kitsuregawa, M.: Skyline operator on anti-correlated distributions. In: VLDB 2013 Proceedings of the 39rd International Conference on Very Large Data Bases, vol. 6, pp. 649–660 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Markus Endres
    • 1
  • Patrick Roocks
    • 1
  • Werner Kießling
    • 1
  1. 1.University of AugsburgAugsburgGermany

Personalised recommendations