Advertisement

Modelling Public Sentiment in Twitter: Using Linguistic Patterns to Enhance Supervised Learning

  • Prerna Chikersal
  • Soujanya Poria
  • Erik Cambria
  • Alexander Gelbukh
  • Chng Eng Siong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9042)

Abstract

This paper describes a Twitter sentiment analysis system that classifies a tweet as positive or negative based on its overall tweet-level polarity. Supervised learning classifiers often misclassify tweets containing conjunctions such as “but” and conditionals such as “if”, due to their special linguistic characteristics. These classifiers also assign a decision score very close to the decision boundary for a large number tweets, which suggests that they are simply unsure instead of being completely wrong about these tweets. To counter these two challenges, this paper proposes a system that enhances supervised learning for polarity classification by leveraging on linguistic rules and sentic computing resources. The proposed method is evaluated on two publicly available Twitter corpora to illustrate its effectiveness.

Keywords

Opinion Mining Sentiment Analysis Sentic Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, H., Liu, B., Mukherjee, A., Shao, J.: Spotting fake reviews using positive-unlabeled learning. Computación y Sistemas 18, 467–475 (2014)CrossRefGoogle Scholar
  2. 2.
    Alonso-Rorís, V.M., Santos Gago, J.M., Pérez Rodríguez, R., Rivas Costa, C., Gómez Carballa, M.A., Anido Rifón, L.: Information extraction in semantic, highly-structured, and semi-structured web sources. Polibits 49, 69–75 (2014)Google Scholar
  3. 3.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems 28, 15–21 (2013)CrossRefGoogle Scholar
  4. 4.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2, 1–135 (2008)CrossRefGoogle Scholar
  5. 5.
    Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies 5, 1–167 (2012)CrossRefGoogle Scholar
  6. 6.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg? In: ICWSM 2011, pp. 538–541 (2011)Google Scholar
  7. 7.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 1320–1326 (2010)Google Scholar
  8. 8.
    Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pp. 1–12 (2009)Google Scholar
  9. 9.
    Poria, S., Cambria, E., Winterstein, G., Huang, G.B.: Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems 69, 45–63 (2014)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Yu, X., Liu, B., Chen, Z.: Sentence-level sentiment analysis in the presence of modalities. In: Gelbukh, A. (ed.) CICLing 2014, Part II. LNCS, vol. 8404, pp. 1–16. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  11. 11.
    Narayanan, R., Liu, B., Choudhary, A.: Sentiment analysis of conditional sentences. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 1, pp. 180–189. Association for Computational Linguistics (2009)Google Scholar
  12. 12.
    Nakov, P., Rosenthal, S., Kozareva, Z., Stoyanov, V., Ritter, A., Wilson, T.: SemEval-2013 task 2: Sentiment analysis in Twitter. In: Proceedings of the International Workshop on Semantic Evaluation, SemEval, vol. 13 (2013)Google Scholar
  13. 13.
    Datla, V.V., Lin, K.I., Louwerse, M.M.: Linguistic features predict the truthfulness of short political statements. International Journal of Computational Linguistics and Applications 5, 79–94 (2014)Google Scholar
  14. 14.
    Cambria, E., Olsher, D., Rajagopal, D.: SenticNet 3: a common and common-sense knowledge base for cognition-driven sentiment analysis. In: Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1515–1521 (2014)Google Scholar
  15. 15.
    Speer, R., Havasi, C.: ConceptNet 5: A large semantic network for relational knowledge. In: The Peoples Web Meets NLP, pp. 161–176. Springer (2013)Google Scholar
  16. 16.
    Wiegand, M., Balahur, A., Roth, B., Klakow, D., Montoyo, A.: A survey on the role of negation in sentiment analysis. In: Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, pp. 60–68. Association for Computational Linguistics (2010)Google Scholar
  17. 17.
    Councill, I.G., McDonald, R., Velikovich, L.: What’s great and what’s not: learning to classify the scope of negation for improved sentiment analysis. In: Proceedings of the Workshop on Negation and Speculation in Natural Language Processing, pp. 51–59. Association for Computational Linguistics (2010)Google Scholar
  18. 18.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)Google Scholar
  19. 19.
    Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of the Second Joint Conference on Lexical and Computational Semantics (SEMSTAR 2013) (2013)Google Scholar
  20. 20.
    Chikersal, P., Poria, S., Cambria, E.: SeNTU: Sentiment analysis of tweets by combining a rule-based classifier with supervised learning. In: Proceedings of the International Workshop on Semantic Evaluation (SemEval 2015) (2015)Google Scholar
  21. 21.
    Turney, P.D.: Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424. Association for Computational Linguistics (2002)Google Scholar
  22. 22.
    Chaovalit, P., Zhou, L.: Movie review mining: A comparison between supervised and unsupervised classification approaches. In: Proceedings of the 38th Annual Hawaii International Conference on System Sciences, HICSS 2005, pp. 112c–112c. IEEE (2005)Google Scholar
  23. 23.
    Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer, Cham (2015)Google Scholar
  24. 24.
    Cambria, E., White, B.: Jumping NLP curves: A review of natural language processing research. IEEE Computational Intelligence Magazine 9, 48–57 (2014)CrossRefGoogle Scholar
  25. 25.
    Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: HLT-NAACL, pp. 380–390 (2013)Google Scholar
  26. 26.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24, 513–523 (1988)CrossRefGoogle Scholar
  27. 27.
    Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)zbMATHGoogle Scholar
  28. 28.
    Kiss, T., Strunk, J.: Unsupervised multilingual sentence boundary detection. Computational Linguistics 32, 485–525 (2006)CrossRefGoogle Scholar
  29. 29.
    Esuli, A., Sebastiani, F.: Sentiwordnet: A publicly available lexical resource for opinion mining. In: Proceedings of LREC, vol. 6, pp. 417–422. Citeseer (2006)Google Scholar
  30. 30.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: Analyzing and comparing opinions on the web. In: Proceedings of the 14th International Conference on World Wide Web, pp. 342–351. ACM (2005)Google Scholar
  31. 31.
    Schnitzer, S., Schmidt, S., Rensing, C., Harriehausen-Mühlbauer, B.: Combining active and ensemble learning for efficient classification of web documents. Polibits 49, 39–45 (2014)Google Scholar
  32. 32.
    Agarwal, B., Poria, S., Mittal, N., Gelbukh, A., Hussain, A.: Concept-level sentiment analysis with dependency-based semantic parsing: A novel approach. Cognitive Computation, 1–13 (2015)Google Scholar
  33. 33.
    Poria, S., Cambria, E., Hussain, A., Huang, G.B.: Towards an intelligent framework for multimodal affective data analysis. Neural Networks 63, 104–116 (2015)CrossRefGoogle Scholar
  34. 34.
    Poria, S., Cambria, E., Howard, N., Huang, G.B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing (2015)Google Scholar
  35. 35.
    Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.B.: EmoSenticSpace: A novel framework for affective common-sense reasoning. Knowledge-Based Systems 69, 108–123 (2014)CrossRefGoogle Scholar
  36. 36.
    Cambria, E., Fu, J., Bisio, F., Poria, S.: Affectivespace 2: Enabling affective intuition for concept-level sentiment analysis. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 508–514 (2015)Google Scholar
  37. 37.
    Vania, C., Ibrahim, M., Adriani, M.: Sentiment lexicon generation for an under-resourced language. International Journal of Computational Linguistics and Applications 5, 63–78 (2014)Google Scholar
  38. 38.
    Poria, S., Cambria, E., Ku, L.W., Gui, C., Gelbukh, A.: A Rule-Based Approach to Aspect Extraction from Product Reviews. In: Proceedings of the Second Workshop on Natural Language Processing for Social Media (SocialNLP), pp. 28–37. Association for Computational Linguistics and Dublin City University (2014)Google Scholar
  39. 39.
    Sidorov, G.: Should syntactic n-grams contain names of syntactic relations? International Journal of Computational Linguistics and Applications 5, 139–158 (2014)MathSciNetGoogle Scholar
  40. 40.
    Sidorov, G., Gelbukh, A., Gómez-Adorno, H., Pinto, D.: Soft similarity and soft cosine measure: Similarity of features in vector space model. Computación y Sistemas 18, 491–504 (2014)CrossRefGoogle Scholar
  41. 41.
    Das, N., Ghosh, S., Gonçalves, T., Quaresma, P.: Comparison of different graph distance metrics for semantic text based classification. Polibits 49, 51–57 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Prerna Chikersal
    • 1
  • Soujanya Poria
    • 1
  • Erik Cambria
    • 1
  • Alexander Gelbukh
    • 2
  • Chng Eng Siong
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexicoMexico

Personalised recommendations