Advertisement

Experiments with Query Expansion for Entity Finding

  • Fawaz AlarfajEmail author
  • Udo Kruschwitz
  • Chris Fox
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9042)

Abstract

Query expansion techniques have proved to have an impact on retrieval performance across many retrieval tasks. This paper reports research on query expansion in the entity finding domain. We used a number of methods for query formulation including thesaurus-based, relevance feedback, and exploiting NLP structure. We incorporated the query expansion component as part of our entity finding pipeline and report the results of the aforementioned models on the CERC collection.

Keywords

Relevance Feedback Query Expansion Mean Average Precision Test Collection Remove Stop Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fang, H., Zhai, C.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Balog, K., Azzopardi, L., de Rijke, M.: Formal models for expert finding in enterprise corpora. In: SIGIR 2006, pp. 43–50. ACM (2006)Google Scholar
  3. 3.
    Macdonald, C., Ounis, I.: Voting for candidates: Adapting data fusion techniques for an expert search task. In: CIKM 2006, pp. 387–396. ACM (2006)Google Scholar
  4. 4.
    Serdyukov, P., Hiemstra, D.: Modeling documents as mixtures of persons for expert finding. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 309–320. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Hecht, B., Teevan, J., Morris, M.R., Liebling, D.J.: Searchbuddies: Bringing search engines into the conversation. In: ICWSM 2012, pp. 138–145 (2012)Google Scholar
  6. 6.
    Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.: Cognos: crowdsourcing search for topic experts in microblogs. In: SIGIR 2012, pp. 575–590. ACM (2012)Google Scholar
  7. 7.
    Cheng, Z., Caverlee, J., Barthwal, H., Bachani, V.: Finding local experts on twitter. In: WWW 2014, pp. 241–242 (2014)Google Scholar
  8. 8.
    Aslay, Ç., O’Hare, N., Aiello, L.M., Jaimes, A.: Competition-based networks for expert finding. In: SIGIR 2013, pp. 1033–1036. ACM (2013)Google Scholar
  9. 9.
    Yang, L., Qiu, M., Gottipati, S., Zhu, F., Jiang, J., Sun, H., Chen, Z.: CQArank: Jointly model topics and expertise in community question answering. In: CIKM 2013, pp. 99–108. ACM (2013)Google Scholar
  10. 10.
    Petkova, D., Croft, W.B.: Proximity-based document representation for named entity retrieval. In: CIKM 2007, pp. 731–740. ACM (2007)Google Scholar
  11. 11.
    Petkova, D., Croft, W.B.: Hierarchical language models for expert finding in enterprise corpora. International Journal on Artificial Intelligence Tools 17, 5–18 (2008)CrossRefGoogle Scholar
  12. 12.
    Fu, Y., Xiang, R., Liu, Y., Zhang, M., Ma, S.: A CDD-based formal model for expert finding. In: CIKM 2007, pp. 881–884. ACM (2007)Google Scholar
  13. 13.
    Macdonald, C., Hannah, D., Ounis, I.: High quality expertise evidence for expert search. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 283–295. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Alarfaj, F., Kruschwitz, U., Fox, C.: An adaptive window-size approach for expert-finding. In: Proceedings of DIR 2013 Dutch-Belgian Information Retrieval Workshop, Delft, the Netherlands, pp. 4–7 (2013)Google Scholar
  15. 15.
    Macdonald, C., Ounis, I.: Expertise drift and query expansion in expert search. In: Proceedings of CIKM 2007, pp. 341–350. ACM (2007)Google Scholar
  16. 16.
    Macdonald, C., Ounis, I.: The influence of the document ranking in expert search. Information Processing & Management 47, 376–390 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhu, J., Song, D., Rüger, S.: Integrating multiple windows and document features for expert finding. Journal of the American Society for Information Science and Technology 60, 694–715 (2009)CrossRefGoogle Scholar
  18. 18.
    Alarfaj, F., Kruschwitz, U., Fox, C.: Exploring adaptive window sizes for entity retrieval. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 573–578. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  19. 19.
    Wu, M., Scholer, F., Garcia, S.: Rmit university at TREC 2008: Enterprise track. In: Proceedings of TREC-17 (2008)Google Scholar
  20. 20.
    Rocchio, J.J.: Relevance feedback in information retrieval. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  21. 21.
    Duan, H., Zhou, Q., Lu, Z., Jin, O., Bao, S., Cao, Y., Yu, Y.: Research on Enterprise Track of TREC 2007 at SJTU APEX Lab. In: Proceedings of TREC-16 (2008)Google Scholar
  22. 22.
    SanJuan, E., Flavier, N., Ibekwe-SanJuan, F., Bellot, P.: Universities of Avignon & Lyon III at TREC 2008: Enterprise track. In: Proceedings of TREC-17 (2008)Google Scholar
  23. 23.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press (1999)Google Scholar
  24. 24.
    Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and an algorithm for identification in text. Natural Language Engineering 1, 9–27 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK

Personalised recommendations