Advertisement

The CLSA Model: A Novel Framework for Concept-Level Sentiment Analysis

  • Erik CambriaEmail author
  • Soujanya Poria
  • Federica Bisio
  • Rajiv Bajpai
  • Iti Chaturvedi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9042)

Abstract

Hitherto, sentiment analysis has been mainly based on algorithms relying on the textual representation of online reviews and microblogging posts. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling, and counting their words. But when it comes to interpreting sentences and extracting opinionated information, their capabilities are known to be very limited. Current approaches to sentiment analysis are mainly based on supervised techniques relying on manually labeled samples, such as movie or product reviews, where the overall positive or negative attitude was explicitly indicated. However, opinions do not occur only at document-level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a review. In order to overcome this and many other issues related to sentiment analysis, we propose a novel framework, termed concept-level sentiment analysis (CLSA) model, which takes into account all the natural-language-processing tasks necessary for extracting opinionated information from text, namely: microtext analysis, semantic parsing, subjectivity detection, anaphora resolution, sarcasm detection, topic spotting, aspect extraction, and polarity detection.

Keywords

Noun Phrase Machine Translation Sentiment Analysis Short Text Computational Linguistics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agirre, E., Ansa, O., Hovy, E., Martínez, D.: Enriching very large ontologies using the www. arXiv preprint cs/0010026 (2000)Google Scholar
  2. 2.
    Andrzejewski, D., Zhu, X., Craven, M.: Incorporating domain knowledge into topic modeling via dirichlet forest priors. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32. ACM (2009)Google Scholar
  3. 3.
    Baldwin, B.: Cogniac: high precision coreference with limited knowledge and linguistic resources. In: Proceedings of a Workshop on Operational Factors in Practical, Robust Anaphora Resolution for Unrestricted Texts, pp. 38–45. Association for Computational Linguistics (1997)Google Scholar
  4. 4.
    Barbu, C., Mitkov, R.: Evaluation tool for rule-based anaphora resolution methods. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp. 34–41. Association for Computational Linguistics (2001)Google Scholar
  5. 5.
    Bell, D., Koulouri, T., Lauria, S., Macredie, R., Sutton, J.: Microblogging as a mechanism for human-robot interaction. Knowledge-Based Systems 69, 64–77 (2014)CrossRefGoogle Scholar
  6. 6.
    Blair-Goldensohn, S., Hannan, K., McDonald, R., Neylon, T., Reis, G.A., Reynar, J.: Building a sentiment summarizer for local service reviews. In: Proceedings of WWW 2008 Workshop on NLP in the Information Explosion Era (2008)Google Scholar
  7. 7.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  8. 8.
    Bloom, P.: Glue for the mental world. Nature 421, 212–213 (2003)CrossRefGoogle Scholar
  9. 9.
    Bonzanini, M., Martinez-Alvarez, M., Roelleke, T.: Opinion summarisation through sentence extraction: An investigation with movie reviews. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval SIGIR 2012, pp. 1121–1122 (2012)Google Scholar
  10. 10.
    Branavan, S.R.K., Chen, H., Eisenstein, J., Barzilay, R.: Learning document-level semantic properties from free-text annotations. Journal of Artificial Intelligence Research 34(2), 569 (2009)zbMATHGoogle Scholar
  11. 11.
    Brennan, S.E., Friedman, M.W., Pollard, C.J.: A centering approach to pronouns. In: Proceedings of the 25th Annual Meeting on Association for Computational Linguistics, pp. 155–162. Association for Computational Linguistics (1987)Google Scholar
  12. 12.
    Cambria, E.: An introduction to concept-level sentiment analysis. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013, Part II. LNCS, vol. 8266, pp. 478–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Cambria, E., Fu, J., Bisio, F., Poria, S.: AffectiveSpace 2: Enabling affective intuition for concept-level sentiment analysis. In: AAAI, Austin, pp. 508–514 (2015)Google Scholar
  14. 14.
    Cambria, E., Gastaldo, P., Bisio, F., Zunino, R.: An ELM-based model for affective analogical reasoning. Neurocomputing 149, 443–455 (2015)CrossRefGoogle Scholar
  15. 15.
    Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. Springer, Cham (2015)Google Scholar
  16. 16.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C., Munro, J.: Towards crowd validation of theUK national health service. In: WebSci, Raleigh (2010)Google Scholar
  17. 17.
    Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C.: Knowledge-based approaches to concept-level sentiment analysis. IEEE Intelligent Systems 28(2), 12–14 (2013)CrossRefGoogle Scholar
  18. 18.
    Cambria, E., Song, Y., Wang, H., Howard, N.: Semantic multi-dimensional scaling for open-domain sentiment analysis. IEEE Intelligent Systems 29(2), 44–51 (2014)CrossRefGoogle Scholar
  19. 19.
    Cao, C., Feng, Q., Gao, Y., Gu, F., Si, J., Sui, Y., Tian, W., Wang, H., Wang, L., Zeng, Q., et al.: Progress in the development of national knowledge infrastructure. Journal of Computer Science and Technology 17(5), 523–534 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Cardie, C., Wagstaff, K., et al.: Noun phrase coreference as clustering. In: Proceedings of the 1999 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, pp. 82–89 (1999)Google Scholar
  21. 21.
    Chen, M., Jin, X., Shen, D.: Short text classification improved by learning multi-granularity topics. In: IJCAI, pp. 1776–1781. Citeseer (2011)Google Scholar
  22. 22.
    Chen, W.L., Zhu, J.B., Yao, T.S., Zhang, Y.X.: Automatic learning field words by bootstrapping. In: Proc. of the JSCL, vol. 72, Tsinghua University Press, Beijing (2003)Google Scholar
  23. 23.
    Chen, Z., Liu, B.: Mining topics in documents: standing on the shoulders of big data. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1116–1125. ACM (2014)Google Scholar
  24. 24.
    Chikersal, P., Poria, S., Cambria, E.: SeNTU: Sentiment analysis of tweets by combining a rule-based classifier with supervised learning. In: Proceedings of the International Workshop on Semantic Evaluation (SemEval 2015) (2015)Google Scholar
  25. 25.
    Cohen, W.W., Hirsh, H.: Joins that generalize: Text classification using whirl. In: KDD, pp. 169–173 (1998)Google Scholar
  26. 26.
    Dagan, I., Itai, A.: Automatic processing of large corpora for the resolution of anaphora references. In: Proceedings of the 13th Conference on Computational Linguistics, vol. 3, pp. 330–332. Association for Computational Linguistics (1990)Google Scholar
  27. 27.
    Dann, S.: Twitter content classification. First Monday 15(12) (2010)Google Scholar
  28. 28.
    Davidov, D., Tsur, O., Rappoport, A.: Enhanced sentiment learning using twitter hashtags and smileys. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters, pp. 241–249. Association for Computational Linguistics (2010)Google Scholar
  29. 29.
    Davidov, D., Tsur, O., Rappoport, A.: Semi-supervised recognition of sarcastic sentences in twitter and amazon. In: Proceedings of the Fourteenth Conference on Computational Natural Language Learning, pp. 107–116. Association for Computational Linguistics (2010)Google Scholar
  30. 30.
    Denber, M.: Automatic resolution of anaphora in english. Eastman Kodak Co. (1998)Google Scholar
  31. 31.
    Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of First ACM International Conference on Web Search and Data Mining (WSDM 2008), pp. 231–240. Stanford University, Stanford(2008)Google Scholar
  32. 32.
    Du, B., Tian, H., Wang, L., Lu, R.: Design of domain-specific term extractor based on multi-strategy. Computer Engineering 31(14), 159–160 (2005)Google Scholar
  33. 33.
    Elliott, C.D.: The Affective Reasoner: A Process Model of Emotions in a Multi-Agent System. PhD thesis, Northwestern University, Evanston (1992)Google Scholar
  34. 34.
    Gangemi, A., Presutti, V., Reforgiato, D.: Frame-based detection of opinion holders and topics: a model and a tool. IEEE Computational Intelligence Magazine 9(1), 20–30 (2014)CrossRefGoogle Scholar
  35. 35.
    Gelfand, B., Wulfekuler, M., Punch, W.F.: Automated concept extraction from plain text. In: AAAI 1998 Workshop on Text Categorization, pp. 13–17 (1998)Google Scholar
  36. 36.
    Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment classification: A deep learning approach. In: Proceedings of the Twenty-eight International Conference on Machine Learning, ICML (2011)Google Scholar
  37. 37.
    Goertzel, B., Silverman, K., Hartley, C., Bugaj, S., Ross, M.: The Baby Webmind project. In: AISB, Birmingham (2000)Google Scholar
  38. 38.
    González-Ibáñez, R., Muresan, S., Wacholder, N.: Identifying sarcasm in twitter: a closer look. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 581–586. Association for Computational Linguistics (2011)Google Scholar
  39. 39.
    Harlambous, Y., Klyuev, V.: Thematically reinforced explicit semantic analysis. International Journal of Computational Linguistics and Applications 4(1), 79–94 (2013)Google Scholar
  40. 40.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics, vol. 2, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  41. 41.
    Hobbs, J.R.: Resolving pronoun references. Lingua 44(4), 311–338 (1978)CrossRefGoogle Scholar
  42. 42.
    Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 50–57. ACM (1999)Google Scholar
  43. 43.
    Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 168–177 (2004)Google Scholar
  44. 44.
    Hu, Y., Boyd-Graber, J., Satinoff, B., Smith, A.: Interactive topic modeling. Machine Learning 95(3), 423–469 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Jagarlamudi, J., Daumé III, H., Udupa, R.: Incorporating lexical priors into topic models. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 204–213. Association for Computational Linguistics (2012)Google Scholar
  46. 46.
    Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Twitter power: Tweets as electronic word of mouth. Journal of the American Society for Information Science and Technology 60(11), 2169–2188 (2009)CrossRefGoogle Scholar
  47. 47.
    Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent twitter sentiment classification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 151–160. Association for Computational Linguistics (2011)Google Scholar
  48. 48.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, Springer, Heidelberg (1998)Google Scholar
  49. 49.
    Jung, S., Segev, A.: Analyzing future communities in growing citation networks. Knowledge-Based Systems 69, 34–44 (2014)CrossRefGoogle Scholar
  50. 50.
    Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. CoRR, abs/1404.2188 (2014)Google Scholar
  51. 51.
    Kennedy, C., Boguraev, B.: Anaphora for everyone: pronominal anaphora resoluation without a parser. In: Proceedings of the 16th Conference on Computational Linguistics, vol. 1, pp. 113–118. Association for Computational Linguistics (1996)Google Scholar
  52. 52.
    Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: The good the bad and the omg! In: ICWSM, vol. 11, pp. 538–541 (2011)Google Scholar
  53. 53.
    Lappin, S., Leass, H.J.: An algorithm for pronominal anaphora resolution. Computational linguistics 20(4), 535–561 (1994)Google Scholar
  54. 54.
    Li, X., Xie, H., Chen, L., Wang, J., Deng, X.: News impact on stock price return via sentiment analysis. Knowledge-Based Systems 69, 14–23 (2014)CrossRefGoogle Scholar
  55. 55.
    Liang, T., Wu, D.-S.: Automatic pronominal anaphora resolution in english texts. In: ROCLING (2003)Google Scholar
  56. 56.
    Liebrecht, C.C., Kunneman, F.A., van den Bosch, A.P.J.: The perfect solution for detecting sarcasm in tweets# not. In: ACL (2013)Google Scholar
  57. 57.
    Liu, F., Weng, F., Wang, B., Liu, Y.: Insertion, deletion, or substitution?: normalizing text messages without pre-categorization nor supervision. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 71–76. Association for Computational Linguistics (2011)Google Scholar
  58. 58.
    Liu, L., Cao, C., Wang, H.: Acquiring hyponymy relations from large chinese corpus. WSEAS Transactions on Business and Economics 2(4), 211 (2005)Google Scholar
  59. 59.
    Liu, L., Cao, C.-G., Wang, H.-T., Chen, W.: A method of hyponym acquisition based on “isa” pattern. Journal of Computer Science, 146–151 (2006)Google Scholar
  60. 60.
    Lu, Y., Zhai, C.: Opinion integration through semi-supervised topic modeling. In: Proceedings of the 17th International Conference on World Wide Web, pp. 121–130. ACM (2008)Google Scholar
  61. 61.
    Lu, Y., Zhai, C.X., Sundaresan, N.: Rated aspect summarization of short comments. In: Proceedings of the 18th International Conference on World Wide Web, pp. 131–140. ACM (2009)Google Scholar
  62. 62.
    Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: Advances in Neural Information Processing Systems, pp. 121–128 (2008)Google Scholar
  63. 63.
    Mitkov, R.: Robust pronoun resolution with limited knowledge. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, vol. 2, pp. 869–875. Association for Computational Linguistics (1998)Google Scholar
  64. 64.
    Mitkov, R., Evans, R., Orăsan, C.: A new, fully automatic version of mitkov’s knowledge-poor pronoun resolution method. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 168–186. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  65. 65.
    Mohammad, S.M., Kiritchenko, S., Zhu, X.: NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of the Second Joint Conference on Lexical and Computational Semantics (SEMSTAR 2013) (2013)Google Scholar
  66. 66.
    Montejo-Raez, A., Diaz-Galiano, M., Martinez-Santiago, F., Urena-Lopez, A.: Crowd explicit sentiment analysis. Knowledge-Based Systems 69, 134–139 (2014)CrossRefGoogle Scholar
  67. 67.
    Mukherjee, A., Liu, B.: Aspect extraction through semi-supervised modeling. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 339–348. Association for Computational Linguistics (2012)Google Scholar
  68. 68.
    Murphyp, G.L.: The big book of concepts. MIT Press (2002)Google Scholar
  69. 69.
    Murray, G., Carenini, G.: Subjectivity detection in spoken and written conversations. Natural Language Engineering 17, 397–418 (2011)CrossRefGoogle Scholar
  70. 70.
    Nakata, K., Voss, A., Juhnke, M., Kreifelts, T.: Collaborative concept extraction from documents. In: Proceedings of the 2nd Int. Conf. on Practical Aspects of Knowledge management (PAKM 1998). Citeseer (1998)Google Scholar
  71. 71.
    Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using em. Machine Learning 39(2-3), 103–134 (2000)CrossRefzbMATHGoogle Scholar
  72. 72.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: Linking text sentiment to public opinion time series. In: ICWSM, vol. 11, pp. 122–129 (2010)Google Scholar
  73. 73.
    Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  74. 74.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREC (2010)Google Scholar
  75. 75.
    Paltoglou, G., Thelwall, M.: Twitter, myspace, digg: Unsupervised sentiment analysis in social media. ACM Transactions on Intelligent Systems and Technology (TIST) 3(4), 66 (2012)Google Scholar
  76. 76.
    Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL 2004) (2004)Google Scholar
  77. 77.
    Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: ACL, pp. 115–124. Ann Arbor (2005)Google Scholar
  78. 78.
    Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: EMNLP, Philadelphia, pp. 79–86 (2002)Google Scholar
  79. 79.
    Polanyi, L., Zaenen, A.: Contextual valence shifters. In: Computing Attitude and Affect in text: Theory and Applications, pp. 1–10. Springer (2006)Google Scholar
  80. 80.
    Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP 2005), pp. 3–28 (2005)Google Scholar
  81. 81.
    Poria, S., Agarwal, B., Gelbukh, A., Hussain, A., Howard, N.: Dependency-based semantic parsing for concept-level text analysis. In: Gelbukh, A. (ed.) CICLing 2014, Part I. LNCS, vol. 8403, pp. 113–127. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  82. 82.
    Poria, S., Cambria, E., Hussain, A., Huang, G.-B.: Towards an intelligent framework for multimodal affective data analysis. Neural Networks 63, 104–116 (2015)CrossRefGoogle Scholar
  83. 83.
    Poria, S., Cambria, E., Ku, L.-W., Gui, C., Gelbukh, A.: A rule-based approach to aspect extraction from product reviews. In: COLING, Dublin, pp. 28–37 (2014)Google Scholar
  84. 84.
    Poria, S., Cambria, E., Winterstein, G., Huang, G.-B.: Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowledge-Based Systems 69, 45–63 (2014)CrossRefGoogle Scholar
  85. 85.
    Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B.: EmoSenticSpace: A novel framework for affective common-sense reasoning. Knowledge-Based Systems 69, 108–123 (2014)CrossRefGoogle Scholar
  86. 86.
    Rajagopal, D., Cambria, E., Olsher, D., Kwok, K.: A graph-based approach to commonsense concept extraction and semantic similarity detection. In: WWW, pp. 565–570. Rio De Janeiro (2013)Google Scholar
  87. 87.
    Ramirez, P.M., Mattmann, C.A.: Ace: improving search engines via automatic concept extraction. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, IRI 2004, pp. 229–234. IEEE (2004)Google Scholar
  88. 88.
    Rao, D., Ravichandran, D.: Semi-supervised polarity lexicon induction. In: EACL, Athens, pp. 675–682 (2009)Google Scholar
  89. 89.
    Read, J.: Using emoticons to reduce dependency in machine learning techniques for sentiment classification. In: Proceedings of the ACL Student Research Workshop, pp. 43–48. Association for Computational Linguistics (2005)Google Scholar
  90. 90.
    Rill, S., Reinel, D., Scheidt, J., Zicari, R.: Politwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Systems 69, 14–23 (2014)CrossRefGoogle Scholar
  91. 91.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, pp. 105–112 (2003)Google Scholar
  92. 92.
    Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., Jin, C.: Red opal: product-feature scoring from reviews. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 182–191. ACM (2007)Google Scholar
  93. 93.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank (2013)Google Scholar
  94. 94.
    Somasundaran, S., Wiebe, J., Ruppenhofer, J.: Discourse level opinion interpretation. In: COLING, Manchester, pp. 801–808 (2008)Google Scholar
  95. 95.
    Song, Y., Wang, H., Wang, Z., Li, H., Chen, W.: Short text conceptualization using a probabilistic knowledgebase. In: IJCAI, Barcelona (2011)Google Scholar
  96. 96.
    Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 841–842. ACM (2010)Google Scholar
  97. 97.
    Stevenson, R., Mikels, J., James, T.: Characterization of the affective norms for english words by discrete emotional categories. Behavior Research Methods 39, 1020–1024 (2007)CrossRefGoogle Scholar
  98. 98.
    Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specificword embedding for twitter sentiment classification (2014)Google Scholar
  99. 99.
    Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, pp. 111–120. ACM (2008)Google Scholar
  100. 100.
    Tsur, O., Davidov, D., Rappoport, A.: Icwsm-a great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews. In: ICWSM (2010)Google Scholar
  101. 101.
    Turney, P.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: ACL, Philadelphia, pp. 417–424 (2002)Google Scholar
  102. 102.
    Turney, P., Littman, M.: Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems 21(4), 315–346 (2003)CrossRefGoogle Scholar
  103. 103.
    Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to automatically enrich a domain ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, vol. 2001, pp. 270–284. ACM (2001)Google Scholar
  104. 104.
    Velikovich, L., Goldensohn, S., Hannan, K., McDonald, R.: The viability of web-derived polarity lexicons. In: NAACL, Los Angeles, pp. 777–785 (2010)Google Scholar
  105. 105.
    Wang, F., Wang, Z., Li, Z., Wen, J.-R.: Concept-based short text classification and ranking. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp. 1069–1078. ACM (2014)Google Scholar
  106. 106.
    Wang, H., Lu, Y., Zhai, C.: Latent aspect rating analysis on review text data: a rating regression approach. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 783–792. ACM (2010)Google Scholar
  107. 107.
    Wang, T., Cai, Y., Leung, H.-F., Lau, R.Y.K., Li, Q.: Huaqing Min. Product aspect extraction supervised with online domain knowledge. Knowledge-Based Systems 71, 86–100 (2014)CrossRefGoogle Scholar
  108. 108.
    Wiebe, J., Riloff, E.: Creating subjective and objective sentence classifiers from unannotated texts. In: Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, pp. 486–497 (2005)Google Scholar
  109. 109.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Language Resources and Evaluation 39(2), 165–210 (2005)CrossRefGoogle Scholar
  110. 110.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT/EMNLP, Vancouver (2005)Google Scholar
  111. 111.
    Yang, C., Lin, K.H., Chen, H.-H.: Emotion classification using web blog corpora. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 275–278. IEEE (2007)Google Scholar
  112. 112.
    Yuntao, Z., Ling, G., Yongcheng, W., Zhonghang, Y.: An effective concept extraction method for improving text classification performance. Geo-Spatial Information Science 6(4), 66–72 (2003)CrossRefGoogle Scholar
  113. 113.
    Zhao, W.X., Jiang, J., Yan, H., Li, X.: Jointly modeling aspects and opinions with a maxent-lda hybrid. In: EMNLP, pp. 56–65. Association for Computational Linguistics (2010)Google Scholar
  114. 114.
    Zheng, J.H., Lu, J.L.: Study of an improved keywords distillation method. Computer Engineering 31(18), 194–196 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Erik Cambria
    • 1
    Email author
  • Soujanya Poria
    • 1
  • Federica Bisio
    • 2
  • Rajiv Bajpai
    • 1
  • Iti Chaturvedi
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.DITENUniversity of GenoaGenoaItaly

Personalised recommendations