Advertisement

E-Quotes: Enunciative Modalities Analysis Tool for Direct Reported Speech in Arabic

  • Motasem AlrahabiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9041)

Abstract

With rapidly growing Arabic online sources aimed to encourage people’s discussions concerning personal, public or social issues (news, blogs, forums…), there is a critical need in development of computational tools for the Enunciative Modalities analysis (attitude, opinion, commitment…). We present a new system that identifies and categorizes quotations in Arabic texts and proposes a strategy to determine whether a given speaker’s quotation conveys some enunciative modalities and potentially its evaluation by the enunciator. Our system enables two query types search for keywords within the “categorized” quotations: searching for keywords in the part potentially containing the reported speech source (the reporting clause) or searching for keywords in the part concerning the topic (the reported clause). The annotation is performed with a rule-based system using the reporting markers’ meaning. We applied our system to process a corpus of Arabic newspaper articles and we obtained promising results for the evaluation.

Keywords

Direct reported speech Enunciative Modalities Opinion Mining Sentiment Analysis categorization Arabic language rule-based system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergler, S.: Semantic Dimensions in the Field of Reporting Verbs. In: The 9th Annual Conference of the University of Waterloo Centre for the New Oxford English Dictionary and Text Research, Oxford (1993)Google Scholar
  2. 2.
    Martin, J.R., White, P.R.R.: The Language of Evaluation: Appraisal in English. Palgrave Macmillan, London & New York (2005)Google Scholar
  3. 3.
    Wiebe, J.: Tracking point of view in narrative. Computational Linguistics 20 (1994)Google Scholar
  4. 4.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)CrossRefGoogle Scholar
  5. 5.
    Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., Pouliquen, B., Belyaeva, J.: Sentiment analysis in the news. In: 7th International Conference on Language Resources and Evaluation, pp. 2216–2220 (2010)Google Scholar
  6. 6.
    O’Keefe, T., Curran, J.R., Ashwell, P., Koprinska, I.: An Annotated Corpus of Quoted Opinions in News Articles. In: 51st Annual Meeting of the Association for Computational Linguistics (2013)Google Scholar
  7. 7.
    Lun-Wei, K., Chia-Ying, L., Hsin-Hsi, C.: Identification of Opinion Holders. International Journal of Computational Linguistics and Chinese Language Processing 14(4), 383–402 (2009)Google Scholar
  8. 8.
    Pareti, S.: The independent encoding of Attribution Relations. In: Eighth Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-8), Pisa (2012)Google Scholar
  9. 9.
    Elarnaoty, M., AbdelRahman, S., Fahmy, A.: A Machine Learning Approach For Opinion Holder Extraction Arabic Language. In: CoRR, abs/1206.1011 (2012)Google Scholar
  10. 10.
    Habash, N.: Introduction to Arabic Natural Language Processing. In: Hirst, G. (ed.) Synthesis Lectures on Human Language Technologies, 187p. Morgan Kaufmann (2010)Google Scholar
  11. 11.
    Abdul-Mageed, M., Kuebler, S., Diab, M.: SAMAR: A system for subjectivity and sentiment analysis of social media Arabic. In: 3rd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA), ICC Jeju, Republic of Korea (2012)Google Scholar
  12. 12.
    Balahur, A., Steinberger, R., Van der Goot, E., Pouliquen, B., Kabadjov, M.: Opinion mining on newspaper quotations. In: 2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 523–526. IEEE (2009)Google Scholar
  13. 13.
    Desclés, J.-P., Guentchéva, Z.: Enonciateur, locuteur, médiateur. In: Monod Becquelin, A., Erikson, P. (eds.) Les Rituels du dialogue: Promenades ethnolinguistiques en terres amérindiennes, pp. 79–112. Société d’ethnologie (Recherches thématiques 6), Nanterre (2000)Google Scholar
  14. 14.
    Alrahabi M., Desclés, J.-P., Suh J.-Y.: Direct Reported Speech in multilingual texts: Automatic annotation and semantic categorization. In: FLAIRS 2010, Florida (2010) Google Scholar
  15. 15.
    Alrahabi, M., Desclés, J.-P.: EXCOM: Plate-forme d’annotation sémantique de textes multilingues. In: TALN 2009, Senlis (2009)Google Scholar
  16. 16.
    Desclés, J.-P.: Contextual Exploration Processing for Discourse Automatic Annotations of Texts. In: FLAIRS 2006, Florida (2006)Google Scholar
  17. 17.
    Dichy, J.: Morphosyntactic Specifiers to be associated to arabic lexical entries-Methodological and theorical aspects. In: ACIDCA 2000, Volume Corpora and Natural Language Processing, Monastir (2000)Google Scholar
  18. 18.
    Korayem, M., Crandall, D.J., Abdul-Mageed, M.: Subjectivity and Sentiment Analysis of Arabic: A Survey. In: Advanced Machine Learning Technologies and Applications, AMLTA (2012)Google Scholar
  19. 19.
    Pouliquen, B., Steinberger, R., Best, C.: Automatic Detection of Quotations in Multilingual News. In: The 6th International Conference on Natural Language Processing, GoTAL 2008, Gothenburg (2008)Google Scholar
  20. 20.
    Krestel, R., Bergler, S., Witte, R.: Minding the Source: Automatic Tagging of Reported Speech in Newspaper Articles. In: 6th International Language Resources and Evaluation (LREC 2008), Marrakech (2008)Google Scholar
  21. 21.
    De la Clergerie, E., Sagot, B., Stern, R., Denis, P., Recource, G., Mignot, V.: Extracting and visualizing quotations from news wires. In: L&TC 2009, Poznan (2008)Google Scholar
  22. 22.
    Polanyi, L., Zaenen, A.: Contextual valence shifters. In: AAAI Spring Symposium on Exploring Attitude and Affect inText: Theories and Applications (2004)Google Scholar
  23. 23.
    Pareti, S., O’Keefe, T., Konstas, I., Curran, J.R., Koprinska, I.: Automatically Detecting and Attributing Indirect Quotations. In: Empirical Methods in Natural Language Processing (EMNLP), Seattle (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Paris-Sorbonne University in Abou DhabiAbou DhabiUAE

Personalised recommendations