Short Text Hashing Improved by Integrating Multi-granularity Topics and Tags

  • Jiaming XuEmail author
  • Bo Xu
  • Guanhua Tian
  • Jun Zhao
  • Fangyuan Wang
  • Hongwei Hao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9041)


Due to computational and storage efficiencies of compact binary codes, hashing has been widely used for large-scale similarity search. Unfortunately, many existing hashing methods based on observed keyword features are not effective for short texts due to the sparseness and shortness. Recently, some researchers try to utilize latent topics of certain granularity to preserve semantic similarity in hash codes beyond keyword matching. However, topics of certain granularity are not adequate to represent the intrinsic semantic information. In this paper, we present a novel unified approach for short text Hashing using Multi-granularity Topics and Tags, dubbed HMTT. In particular, we propose a selection method to choose the optimal multi-granularity topics depending on the type of dataset, and design two distinct hashing strategies to incorporate multi-granularity topics. We also propose a simple and effective method to exploit tags to enhance the similarity of related texts. We carry out extensive experiments on one short text dataset as well as on one normal text dataset. The results demonstrate that our approach is effective and significantly outperforms baselines on several evaluation metrics.


Similarity Search Hashing Topic Features Short Text 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 459–468. IEEE (2006)Google Scholar
  2. 2.
    Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. The Journal of Machine Learning Research 3, 993–1022 (2003)zbMATHGoogle Scholar
  4. 4.
    Chen, M., Jin, X., Shen, D.: Short text classification improved by learning multi-granularity topics. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1776–1781. AAAI Press (2011)Google Scholar
  5. 5.
    Cheng, X., Lan, Y., Guo, J., Yan, X.: Btm: Topic modeling over short texts. IEEE Transactions on Knowledge and Data Engineering, 1 (2014)Google Scholar
  6. 6.
    Jin, O., Liu, N.N., Zhao, K., Yu, Y., Yang, Q.: Transferring topical knowledge from auxiliary long texts for short text clustering. In: CIKM, pp. 775–784. ACM (2011)Google Scholar
  7. 7.
    Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth International Conference on Machine Learning, Citeseer (1995)Google Scholar
  9. 9.
    Lin, G., Shen, C., Suter, D., van den Hengel, A.: A general two-step approach to learning-based hashing. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 2552–2559. IEEE (2013)Google Scholar
  10. 10.
    Phan, X.H., Nguyen, L.M., Horiguchi, S.: Learning to classify short and sparse text & web with hidden topics from large-scale data collections. In: Proceedings of the 17th International Conference on World Wide Web, pp. 91–100. ACM (2008)Google Scholar
  11. 11.
    Salakhutdinov, R., Hinton, G.: Semantic hashing. International Journal of Approximate Reasoning 50(7), 969–978 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, Q., Zhang, D., Si, L.: Semantic hashing using tags and topic modeling. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 213–222. ACM (2013)Google Scholar
  13. 13.
    Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Information Processing Systems, pp. 1753–1760 (2009)Google Scholar
  14. 14.
    Xu, J., Liu, P., Wu, G., Sun, Z., Xu, B., Hao, H.: A fast matching method based on semantic similarity for short texts. In: Zhou, G., Li, J., Zhao, D., Feng, Y. (eds.) NLPCC 2013. CCIS, vol. 400, pp. 299–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Wang, F., Si, L.: Composite hashing with multiple information sources. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 225–234. ACM (2011)Google Scholar
  16. 16.
    Zhang, D., Wang, J., Cai, D., Lu, J.: Extensions to self-taught hashing: Kernelisation and supervision. Practice 29,  38 (2010)Google Scholar
  17. 17.
    Zhang, D., Wang, J., Cai, D., Lu, J.: Laplacian co-hashing of terms and documents. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 577–580. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Zhang, D., Wang, J., Cai, D., Lu, J.: Self-taught hashing for fast similarity search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 18–25. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jiaming Xu
    • 1
    Email author
  • Bo Xu
    • 1
  • Guanhua Tian
    • 1
  • Jun Zhao
    • 1
  • Fangyuan Wang
    • 1
  • Hongwei Hao
    • 1
  1. 1.Institute of Automation, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations